
9. Transformer
LING-581-Natural Language Processing 1

Instructor: Hakyung Sung
October 21, 2025
*Acknowledgment: These course slides are based on materials from CS224N @ Stanford University; Dr. Kilho Shin @ Kyocera



Table of contents

1. Review: Attention

2. The transformer model

3. Understanding the Transformer with example

4. Wrap up

1



Review: Attention



Seq2Seq: Problem

It becomes quite difficult to pack all the information of the input
sequence into a fixed-length context vector.

This is called Bottleneck problem.
2



Seq2Seq: Problem

The attentionmechanism was introduced to address this
problem.

3



Seq2Seq: Problem

When the decoder generates each word in the output sequence,
the attention mechanism

4



Seq2Seq: Problem

is an algorithm that makes it “attend” to which parts of the input
sequence are important.

5



Attention

Suppose the input sequence comes in like this:

6



Attention

We store the hidden state for each input word separately.

7



Attention

We build a context vector and feed it to the decoder,

8



Attention

and obtain the decoder’s hidden state and output as follows.

9



Attention

The similarity between two vectors works as a measure that
determines the relationship between two states.

10



Attention

We focused on the simplest method: the dot product.

11



Attention

For example:

12



Attention

For example:

13



Attention

For example:

14



Attention

Suppose the encoder hidden state is (0.8, 0.2) and the decoder
hidden state is (0.7, 0.3).

15



Attention

Suppose the encoder hidden state is (0.8, 0.2) and the decoder
hidden state is (0.7, 0.3).

16



Attention

Then the attention score s1 becomes 0.62 through the following
dot-product computation.

17



Attention

Next, we compute the softmax of each attention score

18



Attention

to convert the attention scores into a probability distribution
and normalize them.

19



Attention

Next, we multiply each attention score by its corresponding input
hidden state.

20



Attention

The multiplication has the effect of amplifying the input hidden
states according to their attention weights.

21



Attention

For example, if the attention scores after the softmax layer are as
follows—

22



Attention

For example, if the attention scores after the softmax layer are as
follows—

23



Attention

Then the input state (0.8, 0.2) multiplied by 0.7 becomes (0.56,
0.14).

24



Attention

Now, take these attention-weighted input hidden states,

25



Attention

sum them up, and you obtain a new context vector.

26



Attention is a general deep learning technique

• Attention has become the powerful, flexible, general way
pointer and memory manipulation in deep learning models.
(A new idea from 2010).

27



The transformer model



Recall

Eventually led to the development of the Transformermodel.

28



Attention in transformers

Multi-head attentions
https://www.youtube.com/watch?v=eMlx5fFNoYc Any hints
from the video clip?

29

https://www.youtube.com/watch?v=eMlx5fFNoYc


RNNs: Long-dependency problem

• RNNs process input sequentially, one token at a time,
passing information through hidden states.

• We discussed the long-dependency problem.
• Somewhat solved through attention algorithms?

30



RNNs: Long-dependency problem

• RNNs process input sequentially, one token at a time,
passing information through hidden states.

• We discussed the long-dependency problem.

• Somewhat solved through attention algorithms?

30



RNNs: Long-dependency problem

• RNNs process input sequentially, one token at a time,
passing information through hidden states.

• We discussed the long-dependency problem.
• Somewhat solved through attention algorithms?

30



RNNs: Lack of parallelizability

• RNNs process input step by step — each hidden state
depends on the previous one.

• This means both the forward and backward passes require
O(sequence length) sequential operations.

• GPUs are great at performing many independent
computations in parallel, but RNNs don’t allow this because
future states can’t be computed until past states are done.

• As a result, training RNNs on very large datasets becomes
slow and inefficient.

31



RNNs: Lack of parallelizability

• RNNs process input step by step — each hidden state
depends on the previous one.

• This means both the forward and backward passes require
O(sequence length) sequential operations.

• GPUs are great at performing many independent
computations in parallel, but RNNs don’t allow this because
future states can’t be computed until past states are done.

• As a result, training RNNs on very large datasets becomes
slow and inefficient.

31



RNNs: Lack of parallelizability

• RNNs process input step by step — each hidden state
depends on the previous one.

• This means both the forward and backward passes require
O(sequence length) sequential operations.

• GPUs are great at performing many independent
computations in parallel, but RNNs don’t allow this because
future states can’t be computed until past states are done.

• As a result, training RNNs on very large datasets becomes
slow and inefficient.

31



RNNs: Lack of parallelizability

• RNNs process input step by step — each hidden state
depends on the previous one.

• This means both the forward and backward passes require
O(sequence length) sequential operations.

• GPUs are great at performing many independent
computations in parallel, but RNNs don’t allow this because
future states can’t be computed until past states are done.

• As a result, training RNNs on very large datasets becomes
slow and inefficient.

31



RNNs+Attention!

• Seq2Seq (RNN) models: Attention connects the decoder to
the encoder — each decoder step selectively focuses on
encoder hidden states.
(Cross-attention only; still sequential)

• In Transformers, attention also occurswithin a single
sentence— all words attend to all words in the previous
layer.
(Self-attention + Cross-attention)

• This means every word can interact with every other word
directly — no need to wait for sequential computation.

• As a result, Transformers overcome both
long-distance dependency and lack of parallelizability.

• Notes. This was NOT an entirely new ways of looking NLP
problems (e.g., probabilistic language models → neural
network), but made a huge progress in the field.

32



RNNs+Attention!

• Seq2Seq (RNN) models: Attention connects the decoder to
the encoder — each decoder step selectively focuses on
encoder hidden states.
(Cross-attention only; still sequential)

• In Transformers, attention also occurswithin a single
sentence— all words attend to all words in the previous
layer.
(Self-attention + Cross-attention)

• This means every word can interact with every other word
directly — no need to wait for sequential computation.

• As a result, Transformers overcome both
long-distance dependency and lack of parallelizability.

• Notes. This was NOT an entirely new ways of looking NLP
problems (e.g., probabilistic language models → neural
network), but made a huge progress in the field.

32



RNNs+Attention!

• Seq2Seq (RNN) models: Attention connects the decoder to
the encoder — each decoder step selectively focuses on
encoder hidden states.
(Cross-attention only; still sequential)

• In Transformers, attention also occurswithin a single
sentence— all words attend to all words in the previous
layer.
(Self-attention + Cross-attention)

• This means every word can interact with every other word
directly — no need to wait for sequential computation.

• As a result, Transformers overcome both
long-distance dependency and lack of parallelizability.

• Notes. This was NOT an entirely new ways of looking NLP
problems (e.g., probabilistic language models → neural
network), but made a huge progress in the field.

32



RNNs+Attention!

• Seq2Seq (RNN) models: Attention connects the decoder to
the encoder — each decoder step selectively focuses on
encoder hidden states.
(Cross-attention only; still sequential)

• In Transformers, attention also occurswithin a single
sentence— all words attend to all words in the previous
layer.
(Self-attention + Cross-attention)

• This means every word can interact with every other word
directly — no need to wait for sequential computation.

• As a result, Transformers overcome both
long-distance dependency and lack of parallelizability.

• Notes. This was NOT an entirely new ways of looking NLP
problems (e.g., probabilistic language models → neural
network), but made a huge progress in the field.

32



RNNs+Attention!

• Seq2Seq (RNN) models: Attention connects the decoder to
the encoder — each decoder step selectively focuses on
encoder hidden states.
(Cross-attention only; still sequential)

• In Transformers, attention also occurswithin a single
sentence— all words attend to all words in the previous
layer.
(Self-attention + Cross-attention)

• This means every word can interact with every other word
directly — no need to wait for sequential computation.

• As a result, Transformers overcome both
long-distance dependency and lack of parallelizability.

• Notes. This was NOT an entirely new ways of looking NLP
problems (e.g., probabilistic language models → neural
network), but made a huge progress in the field.

32



Parallelization in Transformers

• Self-Attention: All tokens attend to all tokens in the same
layer simultaneously.

• Unlike RNNs, Transformer layers do not depend on previous
hidden states; each token’s representation is updated in
parallel.

• This allows GPUs to perform all attention computations at
once using matrix multiplication.

• Training and inference are therefore much faster, especially
for long sequences and large datasets.

33



Parallelization in Transformers

• Self-Attention: All tokens attend to all tokens in the same
layer simultaneously.

• Unlike RNNs, Transformer layers do not depend on previous
hidden states; each token’s representation is updated in
parallel.

• This allows GPUs to perform all attention computations at
once using matrix multiplication.

• Training and inference are therefore much faster, especially
for long sequences and large datasets.

33



Parallelization in Transformers

• Self-Attention: All tokens attend to all tokens in the same
layer simultaneously.

• Unlike RNNs, Transformer layers do not depend on previous
hidden states; each token’s representation is updated in
parallel.

• This allows GPUs to perform all attention computations at
once using matrix multiplication.

• Training and inference are therefore much faster, especially
for long sequences and large datasets.

33



Parallelization in Transformers

• Self-Attention: All tokens attend to all tokens in the same
layer simultaneously.

• Unlike RNNs, Transformer layers do not depend on previous
hidden states; each token’s representation is updated in
parallel.

• This allows GPUs to perform all attention computations at
once using matrix multiplication.

• Training and inference are therefore much faster, especially
for long sequences and large datasets.

33



From Dot Product to Soft Lookup

• Recall how we calculated the dot product between the
decoder state (query) and each encoder hidden state (key) in
the Seq2Seq attention.

• That dot product measured how similar the query was to
each key — giving us attention weights after softmax.

• In Transformers, the same idea is extended: every token’s
representation acts as a query, looking up information from
a set of keys and values (soft, averaging lookup in a
key–value store) ⇒ The dot product attention becomes a
fuzzy retrieval mechanism that allows each token to access
information from all others in parallel.

34



From Dot Product to Soft Lookup

• Recall how we calculated the dot product between the
decoder state (query) and each encoder hidden state (key) in
the Seq2Seq attention.

• That dot product measured how similar the query was to
each key — giving us attention weights after softmax.

• In Transformers, the same idea is extended: every token’s
representation acts as a query, looking up information from
a set of keys and values (soft, averaging lookup in a
key–value store) ⇒ The dot product attention becomes a
fuzzy retrieval mechanism that allows each token to access
information from all others in parallel.

34



From Dot Product to Soft Lookup

• Recall how we calculated the dot product between the
decoder state (query) and each encoder hidden state (key) in
the Seq2Seq attention.

• That dot product measured how similar the query was to
each key — giving us attention weights after softmax.

• In Transformers, the same idea is extended: every token’s
representation acts as a query, looking up information from
a set of keys and values (soft, averaging lookup in a
key–value store) ⇒ The dot product attention becomes a
fuzzy retrieval mechanism that allows each token to access
information from all others in parallel.

34



Understanding the
Transformer with example



The structure of the Transformer (proposed by Vaswani et al.,
2017) looks like this:

35



Before diving into the detailed calculations, let’s first take a look
at the overall structure.

36



The Transformer model can be broadly divided into two main
parts.

37



Here we see the encoder part,

38



and the decoder part.

39



If we look closely at the entire Transformer model,

40



we can see that the same kinds of blocks are repeatedly
stacked.

41



Embedding layer

42



Multi-head attention

43



Add & Norm layer

44



and also the Feed-Forward layer.

45



So, even though the Transformer may look complicated at first
glance,

46



it’s actually made up of a few components that are repeatedly
stacked.

47



By examining each part step by step, we can fully understand
how the model works.

48



From now on, let’s use a simple example to explore how the
Transformer learns.

49



To train a Transformer model, the very first step is to create a
dataset.

50



Next, we extract all the words from the dataset to build a
vocabulary.

51



Then, we assign each word (or token) a unique number (index) so
that the model can process it as input data.

52



We assign each word (token) a unique index to convert it into a
form that the model can handle.

53



For simplicity, let’s assume a very small number of tokens when
assigning these indices.

54



When an input sentence like this comes in, the first step is word
embedding.

55



The input embedding block takes input tokens like [5, 8, 9] and

56



outputs the corresponding embedding vectors for each word.

57



The embedding layer compresses, for example, 11 words into

58



dense vectors of length 6.

59



• In the original paper, 37,000 words were reduced to
512-dimensional embeddings. (So, it doesn’t have to be 6 as
in our example.)

• It’s important to understand that this dimensional
embeddings allow the model to efficiently process and
represent a large number of words internally.

60



• In the original paper, 37,000 words were reduced to
512-dimensional embeddings. (So, it doesn’t have to be 6 as
in our example.)

• It’s important to understand that this dimensional
embeddings allow the model to efficiently process and
represent a large number of words internally.

60



Next is positional encoding. The Transformer uses a unique way
to encode the position of words within a sentence.

61



Why do we need this?

Self-attention alone does not capture word
order (e.g., RNNs); it treats inputs as a set, not a sequence.

62



Why do we need this? Self-attention alone does not capture word
order (e.g., RNNs); it treats inputs as a set, not a sequence.

62



We encode the position of each word based on the following
formulas.

63



Let’s take a closer look at these formulas.

64



In this example, the value of 𝑑model is 6 (the dimensionality of the
model).

65



And the variable pos takes the values 0, 1, and 2 in order.

66



i = 0, 1, 2 denotes the dimension index used for even (2i) and odd
(2i+1) components. For even dimensions, we apply this formula:

67



And for odd dimensions, we apply this formula:

68



We can now compute the positional encoding values as follows:

69



Once we have these positional embeddings, we simply add them
to the input embeddings:

70



By adding them together, we obtain the combined input +
positional embedding vectors.

71



By adding them together, we obtain the combined input +
positional embedding vectors.

72



Now, it’s time to feed this combined input–position matrix into
themulti-head attention, which is the core component of the
Transformer.

73



Again, the Transformer’s multi-head attention is different from
the attention mechanism used in traditional seq2seq models.
While seq2seq attention focuses on aligning the input and output
sequences,

74



the Transformer’s attention captures the relationships between
words within the same input sentence.

75



The structure of the multi-head attention mechanism used for
self-attention looks like this:

76



We make three copies of the input + positional encoding matrix.

Why? This is done to create Query (Q), Key (K), and Value (V)
matrices — each representing a different projection of the same
input for the attention mechanism.

77



We make three copies of the input + positional encoding matrix.

Why?

This is done to create Query (Q), Key (K), and Value (V)
matrices — each representing a different projection of the same
input for the attention mechanism.

77



We make three copies of the input + positional encoding matrix.

Why? This is done to create Query (Q), Key (K), and Value (V)
matrices — each representing a different projection of the same
input for the attention mechanism.

77



To obtain the Q matrix, we create the following 6×6 weight matrix
(randomly initialized).

78



And then we perform matrix multiplication to obtain the Q
(Query) matrix.

79



To compute the K (Key) matrix, we create another 6×6 weight
matrix (randomly initialized) and multiply it with the input.

80



Using the same process, we perform another matrix
multiplication to obtain the V (Value) matrix.

81



Now, we have the three inputs of the multi-head attention layer
— Q (Query), K (Key), and V (Value).

82



Next, we perform the matrix multiplication between Q and K. The
formula for this operation is as follows:

83



When we plug in the matrix values and calculate,

84



we can obtain the result as follows:

85



Next, we apply scaling, which divides the matrix by
√

6, since in
this example the value of 𝑑model is 6.

86



Next, we apply scaling, which divides the matrix by
√

6, since in
this example the value of 𝑑model is 6.

87



Since the mask layer is not used in the encoder, we will skip it
here.

88



The next softmax layer converts the matrix values into
probabilities.

89



This 3×3 matrix represents the self-attention weights.

90



This matrix numerically shows how each word in the input is
related to every other word.

91



Thus, word pairs with higher relevance receive higher attention
values, while those with lower relevance receive smaller values —
as the model learns these relationships.

92



While traditional attention models focused on relationships
between the input sequence and output sequence, self-attention
takes the same input matrix and feeds it into two separate
networks to produce the Q and K matrices.

93



Amazingly, by simply multiplying these two matrices, the model
can represent the correlations between words within a sentence.

94



Because the model processes all words in parallel rather than
sequentially, it achieves much faster computation.

95



Even for long sentences, the model can calculate the attention
between all pairs of words without bias or loss of information.

96



This self-attention mechanism is the core structure that made
today’s large language models (LLMs) possible.

97



So, what about the final matrix multiplication?

98



We multiply this by the V matrix to obtain the final output — a
self-attended embedding that combines (1) input, (2) positional,
and (3) attention information.

99



So far, we’ve assumed a single-head attention for simplicity, but in
reality, the Transformer computes multi-head attention — the
original paper uses 8 heads.

100



When using multiple heads, the model splits the dimensions of Q,
K, and V according to the number of heads, performs
self-attention separately for each head, then concatenates the
resulting matrices and passes them through a fully connected
layer to produce the final output of multi-head attention.

101



Next, we move on to the addition and normalization layer.

102



The addition step adds the multi-head output matrix to the initial
input + positional embedding.

103



Let’s assume that the resulting matrix looks like this:

104



Next, for the normalization step, we first calculate the mean and
standard deviation for each column.

105



106



107



108



109



Next is the Feed-Forward layer.

110



The Feed-Forward layer is a simple neural network consisting of
two layers and using ReLU() as the activation function.

FFN(𝑥) = ReLU(𝑥𝑊1 + 𝑏1)𝑊2 + 𝑏2

111



112



Applying the ReLU activation function...

113



Applying the ReLU activation function...

114



Negative values become 0.

115



Then, by multiplying with the second layer’s weights and biases,
we obtain the final output of the Feed-Forward layer. The purpose
of this layer is to increase non-linearity, allowing the network to
better process and distinguish complex patterns (recall
multi-layer perceptrons!)

116



Next, we repeat the same Add & Normalize process.

117



As before, we first calculate the sum of the two matrices.

118



Then, we normalize the matrix again:

119



This resulting matrix is the final output of the encoder.

120



Now, let’s move on to the Decoder.

121



Just like the encoder, the decoder first performsword encoding
and positional encoding of the output (target) sequence.

122



The process of word encoding and positional encoding is
identical to that in the encoder. In fact, the positional encoding
values can be reused from the encoder.

123



Here’s how it looks:

124



TheMasked Multi-Head Attention operation in the decoder is
almost the same as in the encoder.

125



TheMasked Multi-Head Attention operation in the decoder is
almost the same as in the encoder.

126



We multiply the Q and K matrices to create the attention matrix.

127



We then scale the matrix by dividing it by
√

6, just as before, so
that the range of values changes accordingly.

128



Now, let’s explore the key concept of the decoder’s multi-head
attention —masking.

129



The goal of the transformer decoder is to generate the output
word sequence, one token at a time (recall: language modeling).

130



While the encoder needs to consider all tokens in the input
sentence to understand the full meaning,

131



the decoder generates output one word at a time.

132



Therefore, it’s natural that the decoder should NOT attend to
words that haven’t been generated yet.

133



To reflect this characteristic, the decoder applies a masking
mechanism during training.

134



The key idea is to hide future tokens so they do not affect the
current prediction.

135



136



137



138



When this masking algorithm is applied to the attention matrix,
we get:

139



We add –inf to the masked positions because, after passing
through the softmax layer, –inf becomes 0, effectively eliminating
attention to those positions.

1
1https://www.youtube.com/shorts/SrJN_hpiuAs 140

https://www.youtube.com/shorts/SrJN_hpiuAs


Feeding this matrix into the softmax layer gives us:

141



Then we multiply the two matrices as follows:

142



Next, we concatenate the resulting matrices (if needed):

143



We then multiply again to produce the final matrix of the masked
multi-head attention.

144



We then apply the same Add & Normalize process again.

145



The decoder’s second multi-head attention operates the same
way as the encoder’s, except for the inputs.

146



Here, the values of 𝐾 and 𝑉 are derived from the encoder’s final
output, multiplied by a 6×6 matrix.

147



The value of 𝑄 comes from the output of the decoder’s previous
Add & Norm layer. In other words, the decoder determines
which parts of the encoder’s output (K, V) to attend to, based
on the context it has generated so far (Q)-similar to attention
in RNNs.

148



Assume the final output of this multi-head attention looks as
follows:

149



The same computational process is repeated, so details are
omitted here.

150



Finally, the last linear and softmax layers produce the final output
probabilities.

151



If the decoder output matrix at this stage looks like this:

152



The linear layer projects it back to the full vocabulary size (=11).

153



The softmax function then produces the final output probabilities.

154



Finally, the predicted outputs are compared with the
ground-truth labels (e.g., 6, 3, 4).

155



Using a loss function (e.g., cross-entropy) and
backpropagation, the model updates all weight parameters
across every layer — this is the learning process of the
Transformer.

156



157



Wrap up



Wrap-up

• We explored the architecture of the Transformer model.

• Do we need to train this model entirely from scratch?
• No. We can take advantage of powerful pre-trained language
models that have already learned general language patterns
from massive datasets.

• We will experiment with these models using Hugging Face
(open-source library) in the lab session.

158



Wrap-up

• We explored the architecture of the Transformer model.
• Do we need to train this model entirely from scratch?

• No. We can take advantage of powerful pre-trained language
models that have already learned general language patterns
from massive datasets.

• We will experiment with these models using Hugging Face
(open-source library) in the lab session.

158



Wrap-up

• We explored the architecture of the Transformer model.
• Do we need to train this model entirely from scratch?
• No. We can take advantage of powerful pre-trained language
models that have already learned general language patterns
from massive datasets.

• We will experiment with these models using Hugging Face
(open-source library) in the lab session.

158



Wrap-up

• We explored the architecture of the Transformer model.
• Do we need to train this model entirely from scratch?
• No. We can take advantage of powerful pre-trained language
models that have already learned general language patterns
from massive datasets.

• We will experiment with these models using Hugging Face
(open-source library) in the lab session.

158



Attention in transformers

Would be a nice recap:
https://www.youtube.com/watch?v=eMlx5fFNoYc Any hints
from the video clip?

159

https://www.youtube.com/watch?v=eMlx5fFNoYc

	Review: Attention
	The transformer model
	Understanding the Transformer with example
	Wrap up

