9. Transformer
LING-581-Natural Language Processing 1

Instructor: Hakyung Sung
October 21, 2025

*Acknowledgment: These course slides are based on materials from CS224N @ Stanford University; Dr. Kilho Shin @ Kyocera



Table of contents

1. Review: Attention
2. The transformer model
3. Understanding the Transformer with example

4. Wrap up



Review: Attention



Seq2Seq: Problem

It becomes quite difficult to pack all the information of the input
sequence into a fixed-length context vector.

This is called Bottleneck problem.



Seq2Seq: Problem

The attention mechanism was introduced to address this
problem.



Seq2Seq: Problem

When the decoder generates each word in the output sequence,
the attention mechanism



Seq2Seq: Problem

is an algorithm that makes it “attend” to which parts of the input
sequence are important.



Suppose the input sequence comes in like this:




We store the hidden state for each input word separately.

It | My | I
1 f 1
Thank you (EOS)



We build a context vector and feed it to the decoder,

{EOS)



and obtain the decoder’s hidden state and output as follows.

Gracias

(EOS)




The similarity between two vectors works as a measure that
determines the relationship between two states.

Gracias

10



We focused on the simplest method: the dot product.

( Dotproduct \I Bilinear Mutti-layer NN
1 1
9 © 8
: @@x@ : oo x| W X6 W, | X tanh Wlxg
|
\ ’I Luong attention Bahdanau
N - attention
Gracias
©0
LA | Tt
1 f
Thank you

11



For example:

| Gracias

(EOS)

Thank you (EOS)

12



For example:

| Gracias

13



For example:

Attention score @ @
0 ré B
Dot|product ] I
| | Gracias

|

t
A ot
! !
Thank you (EOS) (EOS)

14



Suppose the encoder hidden state is (0.8, 0.2) and the decoder
hidden state is (0.7, 0.3).

C?) ® @
o & b
s L[
©0.80.2) ©7,0.
— — — — —
Ll ,-lwlw HIPGEESH - N
Thlnk yIu (Els) (EOS)

15



Suppose the encoder hidden state is (0.8, 0.2) and the decoder
hidden state is (0.7, 0.3).

_.@_.@

| Gracias

-

l |
©08,0.2)

L

,",v‘ I

¥
! f
Thank you {EOS)

16



Then the attention score s1 becomes 0.62 through the following
dot-product computation.

s -
(0.8,0.2) ((Ag'gx%g%zxo'% i)
| I | Gracias

() () (=)0 () ()

®6 > &G B!
, RS M H ”

!
Thank you (EOS) (EOS)

17



Next, we compute the softmax of each attention score

Gracias

Thank you (EOS) {EOS)

18



to convert the attention scores into a probability distribution
and normalize them.

SO O
- —[—T———i-—-r———--—-r-'J

| Gracias
08,02 @@ 07,03 @@ 1
= ‘ﬁz : a[ = Tt "’ai?‘ =
.|r‘»!!x S g I S ] P =] L
f f
Thank you (EOS) (EOS)

19



Next, we multiply each attention score by its corresponding input
hidden state.

o
>0 -0
t

| Gracias

08,0.2)

20



The multiplication has the effect of amplifying the input hidden
states according to their attention weights.

A dmm e A
(0—@ 00 06—
- __T___d-_ - ---T-

| Gracias
0.8,02) @@ i:,os) t

[eatemt | | [maifes [ e

Thank you (EOS) (EOS)

21



For example, if the attention scores after the softmax layer are as

follows—
R
®—@07 ®—@02 ® 0.1
t t t
RN
— —©
Gracias
0802 E)E) @@ (0703)]
G gl
B 2 2 Y N2
Thlnk you (E(T)S) (EOS)

22



For example, if the attention scores after the softmax layer are as

follows—

t
0802 07 ®@—@)

—

| Gracias
) ©.7,03) t
H;LLB"L =BT
!

23



Then the input state (0.8, 0.2) multiplied by 0.7 becomes (0.56,
0.14).

\"'

(0 56,0.14)

@@ @@ @@
(0.8,0.2)x0.7 —@07 6%—@0 2 Q<—@o1
[ ]
& | o
S S
T I

—o—@-

Gracias
e (0703)@@1
T (R T v T — \—’4‘|”_‘§f
28T | | dEet ] LB SR
! f f
Thank you {EOS) (EOS)

24



Now, take these attention-weighted input hidden states,

- mEEEEEEmm————— A
l BB 68 66
(S A S MNP
&) ®—C? ®~C?)
t
rEEEE]
Tt
| Gracias
@9 esT
— —— —i— — — ]
Il allatsl |ML —— \_,_,"-LLEJ L
Thlnk y(Iu (Els) (EOS)

25



sum them up, and you obtain a new context vector.

(
o o ’
LT [T
Gracias
°0 o8
— o T — S
EREH RISt Y~ N5
! ! f !
Thank you {EOS) (EOS)

26



Attention is a general deep learning technique

+ Attention has become the powerful, flexible, general way
pointer and memory manipulation in deep learning models.
(A new idea from 2010).

27



The transformer model



Eventually led to the development of the Transformer model.

Output
Probabilties

Tinear

Add & Nom
Feed
Forward

Muli-Head
Attention

Add & Nom

Nx
Nx
Positional Positional
Encoding Encoding

Tnout Output
Embedding Embedding

Inputs Outputs
(shifted right)

28



Attention in transformers

Multi-head attentions
https://www.youtube.com/watch?v=eM1x5fFNoYc Any hints
from the video clip?

29


https://www.youtube.com/watch?v=eMlx5fFNoYc

RNNs: Long-dependency problem

* RNNs process input sequentially, one token at a time,
passing information through hidden states.

30



RNNs: Long-dependency problem

* RNNs process input sequentially, one token at a time,
passing information through hidden states.

* We discussed the long-dependency problem.

30



RNNs: Long-dependency problem

* RNNs process input sequentially, one token at a time,
passing information through hidden states.

* We discussed the long-dependency problem.
+ Somewhat solved through attention algorithms?

30



RNNs: Lack of parallelizability

* RNNs process input step by step — each hidden state
depends on the previous one.

31



RNNs: Lack of parallelizability

* RNNs process input step by step — each hidden state
depends on the previous one.

* This means both the forward and backward passes require
O(sequence length) sequential operations.

31



RNNs: Lack of parallelizability

* RNNs process input step by step — each hidden state
depends on the previous one.

* This means both the forward and backward passes require
O(sequence length) sequential operations.

* GPUs are great at performing many independent
computations in parallel, but RNNs don't allow this because
future states can't be computed until past states are done.

31



RNNs: Lack of parallelizability

* RNNs process input step by step — each hidden state
depends on the previous one.

* This means both the forward and backward passes require
O(sequence length) sequential operations.

* GPUs are great at performing many independent

computations in parallel, but RNNs don't allow this because
future states can't be computed until past states are done.

As a result, training RNNs on very large datasets becomes
slow and inefficient.

31



RNNs+Attention!

+ Seq2Seq (RNN) models: Attention connects the decoder to
the encoder — each decoder step selectively focuses on
encoder hidden states.

(Cross-attention only; still sequential)

32



RNNs+Attention!

+ Seq2Seq (RNN) models: Attention connects the decoder to
the encoder — each decoder step selectively focuses on
encoder hidden states.

(Cross-attention only; still sequential)

 In Transformers, attention also occurs within a single
sentence — all words attend to all words in the previous
layer.

(Self-attention + Cross-attention)

32



RNNs+Attention!

+ Seq2Seq (RNN) models: Attention connects the decoder to
the encoder — each decoder step selectively focuses on
encoder hidden states.

(Cross-attention only; still sequential)

 In Transformers, attention also occurs within a single
sentence — all words attend to all words in the previous
layer.

(Self-attention + Cross-attention)

* This means every word can interact with every other word

directly — no need to wait for sequential computation.

32



RNNs+Attention!

+ Seq2Seq (RNN) models: Attention connects the decoder to
the encoder — each decoder step selectively focuses on
encoder hidden states.

(Cross-attention only; still sequential)

 In Transformers, attention also occurs within a single
sentence — all words attend to all words in the previous
layer.

(Self-attention + Cross-attention)

* This means every word can interact with every other word
directly — no need to wait for sequential computation.

* As aresult, Transformers overcome both
long-distance dependency and lack of parallelizability.

32



RNNs+Attention!

+ Seq2Seq (RNN) models: Attention connects the decoder to
the encoder — each decoder step selectively focuses on
encoder hidden states.

(Cross-attention only; still sequential)

 In Transformers, attention also occurs within a single
sentence — all words attend to all words in the previous
layer.

(Self-attention + Cross-attention)

* This means every word can interact with every other word
directly — no need to wait for sequential computation.

* As aresult, Transformers overcome both
long-distance dependency and lack of parallelizability.

* Notes. This was NOT an entirely new ways of looking NLP
problems (e.g., probabilistic language models — neural
network), but made a huge progress in the field.

32



Parallelization in Transformers

 Self-Attention: All tokens attend to all tokens in the same
layer simultaneously.

33



Parallelization in Transformers

 Self-Attention: All tokens attend to all tokens in the same
layer simultaneously.

+ Unlike RNNs, Transformer layers do not depend on previous
hidden states; each token's representation is updated in
parallel.

33



Parallelization in Transformers

 Self-Attention: All tokens attend to all tokens in the same
layer simultaneously.

+ Unlike RNNs, Transformer layers do not depend on previous
hidden states; each token's representation is updated in
parallel.

* This allows GPUs to perform all attention computations at
once using matrix multiplication.

33



Parallelization in Transformers

+ Self-Attention: All tokens attend to all tokens in the same
layer simultaneously.

+ Unlike RNNs, Transformer layers do not depend on previous
hidden states; each token's representation is updated in
parallel.

* This allows GPUs to perform all attention computations at
once using matrix multiplication.

Training and inference are therefore much faster, especially
for long sequences and large datasets.

33



From Dot Product to Soft Lookup

* Recall how we calculated the dot product between the
decoder state (query) and each encoder hidden state (key) in
the Seq2Seq attention.

34



From Dot Product to Soft Lookup

* Recall how we calculated the dot product between the
decoder state (query) and each encoder hidden state (key) in

the Seq2Seq attention.

* That dot product measured how similar the query was to
each key — giving us attention weights after softmax.

34



From Dot Product to Soft Lookup

* Recall how we calculated the dot product between the
decoder state (query) and each encoder hidden state (key) in
the Seq2Seq attention.

* That dot product measured how similar the query was to
each key — giving us attention weights after softmax.

+ In Transformers, the same idea is extended: every token's
representation acts as a query, looking up information from
a set of keys and values (soft, averaging lookup in a
key-value store) = The dot product attention becomes a
fuzzy retrieval mechanism that allows each token to access
information from all others in parallel.

34



Understanding the
Transformer with example



The structure of the Transformer (proposed by Vaswani et al.,

2017) looks like this:

Add & Norm
——————

Feed
Forward

Output
Probabilities

Add & Norm
—— —

Feed
Forward

]
Add & Norm
e 1L,

Multi-Head
Attention Nx

i

) )i

Add & Norm

Multi-Head

Add & Norm

Masked
Multi-Head

Positional
Encoding

Attention Attention
LY F
Positional
& Encoding
Input Output
Embedding Embedding
Inputs Outputs

35



Before diving into the detailed calculations, let’s first take a look
at the overall structure.

Output
Probabilities

Add & Norm
e
Feed
Forward
1 _/
Add & Norm
LEIRT RG] Multi-Head
Fc:'ee:rd Attention Nx
b F )
T i
Add & Norm
e
Multi-Head Multi-Head
Attention Attention
LY F LY
Positional Positional
Encoding & Encoding
Input Output
Embedding Embedding
Inputs Outputs

36



The Transformer model can be broadly divided into two main

parts.

Add & Norm

Feed
Forward

QOutput
Probabilities

Add & Norm
L

Feed
Forward

Add & Norm

Multi-Head
Attention

Nx

Add & Norm

Multi-Head

Add & Norm

Masked
Multi-Head

Positional
Encoding

Attention Attention
LY ¥ L 7
Positional
®_? & Encoding
Input Output
Embedding Embedding
Inputs Outputs

37



Here we see the encoder part,

Add & Norm
—_—

Feed
Forward

Add & Norm

Multi-Head
Attention

Positional
Encoding

38



and the decoder part.

Output
Probabilities

Add & Norm

Feed
Forward

Add & Norm

Multi-Head
Attention

Maske
Multi-Head
Attention

N

Positional
Encoding

39



If we look closely at the entire Transformer model,

Add & Norm
=

Feed
Forward

Output
Probabilities

Add & Norm
—— —

Feed
Forward

]
Add & Norm
e e

Multi-Head
Attention Nx

i

) )i

Add & Norm

Multi-Head

Add & Norm
Masked
Multi-Head

Positional
Encoding

Attention Attention
LY F
Positional
& Encoding
Input Output
Embedding Embedding
Inputs Outputs

40



we can see that the same kinds of blocks are repeatedly

stacked.

Output
Probabilities

Add & Norm
——

Feed
Forward
1 _J
LAdd & Norm]
LAdd & Norm | Multi-Head
FoFree:rd Attention Nx

L F )
T i

Add & Norm

Multi-Head

Add & Norm

Multi-Head

Positional
Encoding

Attention Attention
T F
Positional
& Encoding
Input Output
Embedding Embedding
Inputs Outputs

41



Embedding layer

Positional
Encoding

Input Output
Embeddlng Embeddlng
Inputs Outputs

Positional
Encoding

42



Multi-head attention

Multi-Head
Attention
Masked

Multi-Head Multi-Head
Attention Attention

43



Add & Norm layer

Add & Norm

i

Add & Norm

44



and also the Feed-Forward layer.

Feed
Forward

Feed
Forward

45



So, even though the Transformer may look complicated at first

glance,

Add & Norm

Feed
Forward

QOutput
Probabilities

Add & Norm
e

Feed
Forward

Add & Norm

Multi-Head
Attention

Nx

Add & Norm

Multi-Head

Add & Norm

Masked
Multi-Head

Positional
Encoding

Attention Attention
LY ¥ L 7
Positional
®_? & Encoding
Input Output
Embedding Embedding
Inputs Outputs

46



it's actually made up of a few components that are repeatedly

stacked.

Output
Probabilities

Add & Norm
——

Feed
Forward
1 _J
LAdd & Norm]
LAdd & Norm | Multi-Head
FoFree:rd Attention Nx

b F )
T i

Add & Norm

Multi-Head

Add & Norm

Multi-Head

Positional
Encoding

Attention Attention
T F
Positional
& Encoding
Input Output
Embedding Embedding
Inputs Outputs

47



By examining each part step by step, we can fully understand
how the model works.

Output
Probabilities

Add & Norm
—— —

Feed
Forward

]
Add & Norm
e 1L,

LEIRT RG] Multi-Head
FoFree:rd Attention Nx
b P2 )
T i

Add & Norm

Masked
Multi-Head

Add & Norm

Multi-Head

Attention Attention
LY F
Positional Positional
Encoding ® ? & Encoding
Input Output
Embedding Embedding
Inputs Outputs

48



From now on, let’s use a simple example to explore how the
Transformer learns.

utput
Probabilities

Positional

A Encoding

Positional
Encoding

49



To train a Transformer model, the very first step is to create a
dataset.

Dataset

‘how are you’, ‘i am fine’
‘iamfine’,  ‘how about
yourself’
Probabilities

Positional

Q Encoding

Positional

Encoding QF:

50



Next, we extract all the words from the dataset to build a
vocabulary.

Dataset Vocab List
(S0S):

‘how are you’, ‘i am fine’ (EOS):

‘iamfine’,  ‘how about .
yourself’ * (PA_D)'
am:
fine:
how:
it
about:
are:
you:
yourself:




Then, we assign each word (or token) a unique number (index) so
that the model can process it as input data.

Dataset Vocab List
‘ D (s0s):
how are you’, ‘i am fine’ (EOS):
‘iamfine’,  ‘how about * .
yourself (PAD):
am:
fine:

you:

0
1
2
3
4
how: 5
6
7
8
: 9
yourself: 1

o




We assign each word (token) a unique index to convertitinto a
form that the model can handle.

Dataset Vocab List
9 b q _— (S0S):
how are you’, ‘i am fine’ (EOS):
‘lamfine’,  ‘how about PAD .
yourself ( X )
am:
fine:

you:
yourself:

Suppose that our task is to make a
model that can do such a Q&A

‘How are you?” @ I am fine’

0
1
2
3
4
how: 5
i 6
7
8
9
1

0

53



For simplicity, let's assume a very small number of tokens when
assigning these indices.

Dataset Vocab List
4 D Clron (o0 P (S0s): 0
how are you’, ‘i am fine’ (EOS): 1
‘iamfine’,  ‘how about * .
yourself <PA_D) N 2
am:
about: 7
yourself: 10

Suppose that our task is to make a
model that can do such a Q&A

‘ P> <§08> am’
[5, =, 91> 10,°, 3]

54



When an input sentence like this comes in, the first step is word

embedding.
Positional A)¢
Encoding y
Embedding
T O SO Eisan

‘How are you?” '™

[5, 8, 9]

55



The input embedding block takes input tokens like [5, 8, 9] and

Positional
Encoding

Input
Embedding
Encoding O § &€ Encoding

How are you?> "™

(5, 8, 9]

Positional () Positional

56



outputs the corresponding embedding vectors for each word.

Positional
Encoding e

Inpt 5, how ozsloae 139{087—022'1.72'
—>

8, are | 091|—0.66| 2.22|o,52|0,35 -0.

How are you?> "™

[5, 8, 9]

57



The embedding layer compresses, for example, 11 words into

(s08): 0
(EOS): 1
(PAD): 2
about: 7
yourself: 10
Positional

_m_
O
0

L
O
Y

E~E
N
N

- 5, how| ozslosel 1.3

8, are | 1| oselzzz

Positional Positional

Input
Embedding
Encoding 9 54 t Encoding

How are you?> "™

(5, 8, 9]

o
w
N
=]
W
a

T
=3
N

Lo |

9, you |—1o 128|015

58



dense vectors of length 6.

<o 0
€01
{PAD): 2
about: 7
yourself: 10

Positional Positional

Encodng (9 &€ Encoding

‘How are you?” ™"
Inputs Outputs
(5, 8, 9]

|l )

n
=
[=]
B3
T
o
N
|0}
o
®
<
i
w
_@_
o
o
|~
T
1<)
R
L
g
N




+ In the original paper, 37,000 words were reduced to
512-dimensional embeddings. (So, it doesn't have to be 6 as
in our example.)

{S0S): 0
{EOS): 1
{PAD): 2
about: 7
yourself: 10
Positional Ve A ~
Encoding
= 5, how |—o,25|o.86 |—1.3s|—o s7|—o zz|1 72|
RO ST 8, are [osfosd 22z osz[oas] oz
e , are [-0.91f-0.66 222 0.5 -
‘How are you?” "™
Inputs Outputs 9, you |-1_05|1,zs|0A15|o‘23|0.06|0443|

[5, 8, 9]

60



* In the original paper, 37,000 words were reduced to
512-dimensional embeddings. (So, it doesn't have to be 6 as
in our example.)

+ It's important to understand that this dimensional
embeddings allow the model to efficiently process and
represent a large number of words internally.

(505): o
(EOS): 1

(PAD): 2

am: )

a‘bout: 7

yourself: 10

A
r N\
= 5, how |—o,25|o.86 |—1.3s|—o s7|—o zz|1 72|
Salhy ©¢ (et -0.91|-0.66] 2.22 0.35-0.2
‘How are you? "™ 8 are [0o00q222) 0520
s o 9, you |-1.05|1.28|0A15|0423|0.06|0443|
(5, 8, 9]

60



Next is positional encoding. The Transformer uses a unique way
to encode the position of words within a sentence.

(S0S): 0
{EOS): 1
{PAD): 2
opos| | | | | ||
1 1 pos
bout: 7 p
yourself: 10 2 pos
- A
Positional
Encoding P f )
Input 5, how |—o.25|0.86 |—1 38| o.s7|»o.zz|1A72|
—
Inputs 8, are |—o491|—0.66|222 0A52|0.35 0420|




Why do we need this?

62



Why do we need this? Self-attention alone does not capture word

order (e.g., RNNSs); it treats inputs as a set, not a sequence.

. po pos
PEpos2iy = sin( 23 ) PEpos,2i+1) = cos( 71 )
100009model 10000%model
= o T T T
(EOS): 1
(PAD): 2
: 1 pos
: 11
about: 7 2 pos
Joursef: 10 6
Positional
Encoding
—p 5, how |—o.25[0.86 I-1.3s|—o.s7|—0.22| 1.72 |
posiional (Y & Posiional
ncoding P encoding 8, are |—0.91|—0.66| 2,22|0.52|0.35|—o.20|
s o 9, you |—1,os|1.zs|0415|oA23|o,06|0,43|

62



We encode the position of each word based on the following
formulas.

] pos pos
PEpos2iy = Sin(————=7—)  PEwpos2i+1) = €0S(——————)
10000%model 100009modet

0 pos
1 pos

2 pos

63



Let's take a closer look at these formulas.

i pos _
PEpos2iy = Sin(———=7—) PE(posai+1) = cos(

10000%modet

0 1 2 3 4 5(d_model-1)
0 pos
1 pos

2 pos

oS
21
10000%modet

P,

64



In this example, the value of d,,q4e is 6 (the dimensionality of the

model).

pos

PEpos2iy = Sin(in) PE(pos,2i+1) = €OS(—————7)
10000 6 10000 6
0 1 2 3 4 5(d_model-1)
0 pos
1 pos
2 pos

65



And the variable pos takes the values 0, 1, and 2 in order.

pos

— )
10000[iii}

PE(pos,Zz) = Sin( PE(pos,2i+1) > ‘;OS(

pos
— i)
10000@

o1 2 3 4 5
0 pos
1 pos
2 pos
6

66



i=0, 1, 2denotes the dimension index used for even (2i) and odd
(2i+1) components. For even dimensions, we apply this formula:

67



And for odd dimensions, we apply this formula:

68



We can now compute the positional encoding values as follows:

WS UEEEEE NN NN EEEEEEEREEEEEEEEREEEEEEEE, W

! . pos ‘ : pos
P PEposaiy = sin(————;7—) & PEgoszir1) = COS(—————) ¢
: 10000%model & 10000%modet

............................................................................

Opos 0 1 0 1 o0 1
1pos 0.84 054005 1 0 1
2 pos 0917042009 1 0 1

H_J
6

69



Once we have these positional embeddings, we simply add them

to the input embeddings:

Positional

Encoding
Opos 0 1 0 1 0 1 5, how |70,25|0.86 |—1.35|70.87|70.zz|1,7z|
1 pOs 0.84 0.54 0.05 1 0 1 8, are |*0.91|*0.66| 2,22|0A52|O,35 |*0.20|
2 pos 0.91-0.42 0.09 1 0 1 9, you |»1A05| 1.28 | 0.15|0423|0.06| 0A43|

70



By adding them together, we obtain the combined input +
positional embedding vectors.

/

0 pos 0 1 0 1 0
1 pos 0.84 0.54 0.05 1 0

2 pos 0.91-042 009 1 | 0

0‘5 h0w| 025|o ssl 1. 3&+0,87|—0.22|1.72|
0.91[-0.66] 2.22| 0.52| 0.35

: poasreol fosdz22]os2] o]

29p¥9u | 1os|w 28|O15|0423|0.06|0.43|

-0.20|

7 L
4 \
¢ Positional \
Encoding \
\

\
5, how| 0. zs|o 86| 1 3e| o.s7|—o,zz|1.7z|

8, are | 091| 066| 2. 22|0_52|0.35 I-O.20|

9, you | 1 05|1 2810.15 0.23|0.06| 0.43|

71



By adding them together, we obtain the combined input +
positional embedding vectors.

0‘5 how| 025|o ssl 1. 3f+0,s7|70.22|1.72|
1 p&reol 0. 91| 0. eel 2. 22| o,sz|0_35

|*0.20|
ngxgu 0| 105|T 2810.15(0.23 0.06|0,43|
<
’ *\
7
¢ Positional > \
Vi Encoding R \
4 \
’ \
’
Opos 0 1 0 1 0 1 5, how| 025|086| 138| o.s7|—o.zz|1.7z|
1pos 084 054005 1| 0 1 8, are | 091| oee|zzz|o.sz|o.35|—c.zo|
2pos 091-042 009 1 0 1 9, you | 105|128|015|o.z3|0A06|0.43|

72



Now, it's time to feed this combined input-position matrix into
the multi-head attention, which is the core component of the
Transformer.

|>0 25|1 86|—1 34 0. 13|> ZZI 2.72|
|>0 O7|>0 12|2 26|1 52 |0 35|080|

015|086|024|1 23|006|1 43|

S ' Positional
Encoding _?

73



Again, the Transformer’s multi-head attention is different from
the attention mechanism used in traditional seq2seq models.

While seq2seq attention focuses on aligning the input and output
sequences,

S L4 Gracias
e 60 01
e =
B et ]l
ThInk y(!u (E(T)S} (E0S)

74



the Transformer’s attention captures the relationships between
words within the same input sentence.

", I like this NLP class a lot
\‘ L4

Mult-Head
Attention

75



The structure of the multi-head attention mechanism used for
self-attention looks like this:

76



We make three copies of the input + positional encoding matrix.

-0.25] 1.86 [-1.38] 0.13-0.22) 2.72|

pemmnrerassmararaean, 0.07 foa2| 2.26] 152 | 035 ] 0.80

+ H Matrix H

rn : mltiplication :
i : -0.25| 1.86 |-1.38 0.13]-0.22] 2.72]
Ho.07 o2 2.26| 1.52 [ 035 ] 0.80

- : : i
% : multiplcation H -0.25] 1.86 |-1.38] 0.13]-0.22] 272
ey : : 0.07}0.12] 2.26] 1.52 | 0.35] 080

. iooQ KoV




We make three copies of the input + positional encoding matrix.

-0.25] 1.86 [-1.38] 0.13-0.22) 2.72|

pemmnrerassmararaean, 0.07 foa2| 2.26] 152 | 035 ] 0.80

+ H Matrix H

rn : mltiplication :
i : -0.25| 1.86 |-1.38 0.13]-0.22] 2.72]
Ho.07 o2 2.26| 1.52 [ 035 ] 0.80

- : : i
% : multiplcation H -0.25] 1.86 |-1.38] 0.13]-0.22] 272
ey : : 0.07}0.12] 2.26] 1.52 | 0.35] 080

. iooQ KoV

Why?



We make three copies of the input + positional encoding matrix.

-0.25] 1.86 [-1.38] 0.13-0.22) 2.72|

..................... 007 F0a2| 2.26] 152 | 035 0.80

o %
. : B

H Matrix H

: multiplication H

-0.25] 1.86 [-1.38] 0.13]-0.22 2.72|

Fo.o7fo.12 2.26] 1.52 | 0.35 | 0.80

e[l

-0.25] 1.86 [-1.38] 0.13]-0.22 2.72|

007012 2.26] 152 [ 0.35] 0.80

DEEEOE

Why? This is done to create Query (Q), Key (K), and Value (V)
matrices — each representing a different projection of the same
input for the attention mechanism.

77



To obtain the Q matrix, we create the following 6x6 weight matrix
(randomly initialized).

037 ] 037|-0.19| 023 0.32] 0.21

0.30f-0.09 ] 0.35 [-0.10f-0.38] 0.21

EOEEEE
T
]

.....................
- el ]
. DEEEEm
e ool

78



And then we perform matrix multiplication to obtain the Q
(Query) matrix.

— | rs6]-02s] 0sa]0s2]-131f 027

0.59 Jo.46]-025]-0.73) 0.47 | 0.19




To compute the K (Key) matrix, we create another 6x6 weight
matrix (randomly initialized) and multiply it with the input.

Q

1.56]-0.25] 0.54 | 0.52 [-131 027

0.59 |06 |-025]-0.73) 0.47 | 0.19

m
-0.18]-0.28) 0.35 |-0.39] 030 [ 0.37

-0.25] 1.86 |-1.38] 0.13]-0.22] 272

0.00 |[-0.14}-0350.12 Joo7 o0 1182|026 |-1.79)0.32 |-1.68

bo.o7fo.12] 2.26 1.52 | 0.35| 0.80

= |-042]-070]-0.56|-0.01] 0.32 |-0.28]
15|-0.32 0.28 |-0.09] 0.09 |-0.18]

; X
ECEEEE

80



Using the same process, we perform another matrix
multiplication to obtain the V (Value) matrix.

1.56]-0.25] 054 | 0.52 [-131 027

0.59 |o.s|-025]-0.73) 0.47 | 0.19

-1.18]-0.52f 0.26 |-1.79] 0.32 |- 1.68

-0.42-0.70[ -0.56]-0.01] 0.32 |-0.28

022 |-0.21]-030f-0.23]-0.35] 0.13

0.7 012022 0.10 J-0.22 |-0.38]

-o.25] 1.85|-1.38] 0.13[-0.22) 272 -1.63 085 [-1.91[-0.47 | 0.25 |-1.38]

sofore] 2o a2 s o] X oot [0t [rsassog

-0.10[-0.10f-0.14 f-0.30 |-0.26 | -0.14

o.15] 086 | 0.24f 1.23[ 0.06 | 1.43 -0.67] 0.44 |-0.80-0.65 -0.41|-1.09}
0.23] 024 |-0.14f 0.01 Jo.a1 Jo.06

[ e

81



Now, we have the three inputs of the multi-head attention layer
— Q (Query), K (Key), and V (Value).

EEDIEE
EREEEE
EETTEE

82



Next, we perform the matrix multiplication between Q and K. The
formula for this operation is as follows:

059 J-0.46-0.25]-0.73] 0.47 | 019!

-1.18[-0.52| 0.26 |-1.79] 0.32 |-1.68

Q-KT

-0.42]-0.70|-0.56] -0.01 0.32 [-0.28

Mask (optional)

-1.63] 0.85 [-1.91Fo.a7 [ 0.25 |-1.38

024034 | 032 079 [-095f1.04

-0.67] 0.44 |-0.80 [-0.65] -0.41]-1.09)

83



When we plug in the matrix values and calculate,

--— - ~

P s

o] W[ osaose[-131] 027

0.5 [os] B2s] 073 0.47] 019

| 4
|
v Kitransposed) ==m=—=
Q

Softmax

Mask (optional)

-0.25] 0.54 | 0.52[-131 027

-1.18]-0.52] 0.26 |-1.79f 0.32 [-1.68

-0.42]-0.70-0.56]-0.01] 0.32 |-0.28)

P




we can obtain the result as follows:

K (transposed)

Softmex Lo on] o]

= |os1]o32]0a0

064 [0.35 | 0.5

Mask (optional)
L]
scaling

QK"




Next, we apply scaling, which divides the matrix by /6, since in
this example the value of d,,qe IS 6.

wofon|on| = Vg

064|035 | 054

86



Next, we apply scaling, which divides the matrix by /6, since in
this example the value of d,,qe IS 6.

013001 fo1s

025|013 016

= [wfom]w] = vg =

064|035 | 054

026 |0.14 | 022

87



Since the mask layer is not used in the encoder, we will skip it
here.

013001 fo1s

064|035 | 054 0.26 |0.14 | 022

88



The next softmax layer converts the matrix values into
probabilities.

013001 ]os 034 031]o3s

Softmax( Py PN P ) = [
T P P

031 .03 Jos7 \ 013|001

ok o) Q- KT = [wfae] = v = [

064 | 0.35 | 054




This 3x3 matrix represents the self-attention weights.

i|__Softmax

Mask (optional)

scaling

mutiscaion

<—

HH

how are you

034 ] 031035

036|032 033

035|031 034




This matrix numerically shows how each word in the input is

related to every other word.

Mask (optional)

i

how are you

034 0.31]03s

036|032 | 033

035 | 0.31 | 03a

91



Thus, word pairs with higher relevance receive higher attention
values, while those with lower relevance receive smaller values —

as the model learns these relationships.

how are you
i ] how [oaa oo

are [o36032 |03

you |oas|oai|o3e

92



While traditional attention models focused on relationships
between the input sequence and output sequence, self-attention
takes the same input matrix and feeds it into two separate
networks to produce the Q and K matrices.

-1.56]-0.25] 0.54 | 052 | -1.31) 0.27)

0.59 |0.46|-0.25)-0.73] 0.47 | 0.19

how are you

how [o.34 ] 0.31]03s

are [o36032 |03

you [o.3s |31 034 -1.18f-0.52] 0.26 |-1.79] 0.32 1.6}

-0.42]-0.70 -0.56-0.01 0.32 -0.28

025 1.86-1.38] 0.13]-0.22] 272! -1.63[ 085|191 f-047] 025 [-1.38

024034 | 032 fo.79 [-0.95f 1.04

0.07 f0.12| 2.26| 1.52 | 0.35 | 0.80

93



Amazingly, by simply multiplying these two matrices, the model
can represent the correlations between words within a sentence.

Q

-1.56]-0.25] 0.54 | 0.52|-1.31) 0.27|

0.5 |0.46[-0.25)-0.73 0.47 | 0.10

how are you

l-0.39]-0.48 0.03]-0.16]-0.30 .16

Mt ......
multiplcation how 034 | 031]oas

are [o o]0 K
you [o3s o1 |oas \ 7“‘87&527”97‘ 55
v

x

CEEOEE
EDEDDED

-1.63) 085 [-1.91 f-0.47 ] 0.25 [-1.38

Mask (optional)

024034 | 032 f-o79-095f 1.04

OEITEE




Because the model processes all words in parallel rather than
sequentially, it achieves much faster computation.

Q

-1.56]-0.25] 0.54 | 0.52|-1.31) 0.27|

0.5 |0.46[-0.25)-0.73 0.47 | 0.10

how are you
multiplcation how [0:34 | 0.31]03s

x

EEOEED
[ A
CEEOEE

4

Mask (optional)

v

L0.25] 1.86 |-1.38] 0.13]-0.22] 272 -1.63) 085 [-1.91 f-0.47 ] 0.25 [-1.38

are |0.36]0.32]033
you [o3s]o31]o3s
Al
v

#

007 f0.12| 2.26| 1.52 | 0.35 | 080 0241034 1032 [-079[-095[1.04

OEITEE

95



Even for long sentences, the model can calculate the attention
between all pairs of words without bias or loss of information.

Q

-1.56]-0.25] 0.54 | 0.52|-1.31) 0.27|

0.5 |0.46[-0.25)-0.73 0.47 | 0.10

how are you

l-0.39]-0.48 0.03]-0.16]-0.30 .16

Mt ......
multiplcation how 034 | 031]oas

x

Mask (optional)

CEEOEE
EDEDDED

-1.63) 085 [-1.91 f-0.47 ] 0.25 [-1.38

are [o o]0 K
you [o3s o1 |oas \ 7“‘87&527”97‘ 55
v

024034 | 032 f-o79-095f 1.04

OEITEE

96



This self-attention mechanism is the core structure that made
today’s large language models (LLMs) possible.

Q

-1.56]-0.25] 0.54 | 0.52|-1.31) 0.27|

0.5 |0.46[-0.25)-0.73 0.47 | 0.10

how are you

o o] oo [ore] o] 016

pani ......
mutighcaton how [ose Joa]oss

) NreE
: o [ TEDEO
A%

Mask (optional)
scaling

T

COEEEE
EEDCED

-1.63) 085 [-1.91 f-0.47 ] 0.25 [-1.38

025 1.86 |-1.38] 0.13[-0.22] 2.72

024034 | 032 f-o79-095f 1.04

007 f0.12| 2.26| 1.52 | 0.35 | 080

OEITEE




So, what about the final matrix multiplication?

-1.56]-0.25] 0.54 | 0.52 | -1.31) 0.27)

0.59 |o.46[-0.25)-0.73 0.47 | 0.10

how are you
0.39]-0.48 0.03]-0.16]-0.30] 0.16

how |0.34 | 0.31]03s

you [o.3s 031034 -1.18f-0.52] 0.26 |-1.79] 0.32 |-1.68]

-0.42]-0.70 -0.56]-0.01] 032 [-0.28

-0.77]-0.69] 0.09 [-0.85) 0.27 |-0.06|




We multiply this by the V matrix to obtain the final output — a
self-attended embedding that combines (1) input, (2) positional,

and (3) attention information.

how are you H
t e oes|rorfoarfoas el £ [ozoss [oss]-oes]oss]ra7

how o3¢ Joaross :
are [oseon]on X: o24foss Joszforsffossfrod] | = [orose o

you [oss[oa1 fosa :|—ns7|o.44}osnl—nsslruawl—v.nsl:

-1.18

99



So far, we've assumed a single-head attention for simplicity, but in
reality, the Transformer computes multi-head attention — the
original paper uses 8 heads.

100



When using multiple heads, the model splits the dimensions of Q,
K, and V according to the number of heads, performs
self-attention separately for each head, then concatenates the
resulting matrices and passes them through a fully connected
layer to produce the final output of multi-head attention.

101



Next, we move on to the addition and normalization layer.

AT o

102



The addition step adds the multi-head output matrix to the initial
input + positional embedding.

103



Let's assume that the resulting matrix looks like this:

-0.59]1.99 |-0.86] 0.38] 0.18 2,10

-0.41] 0.02| 279] 1.77 [ 076|119

EEEDED

AT o

104



Next, for the normalization step, we first calculate the mean and
standard deviation for each column.

M SD

[aliwoo]owee]on] —» 070  1.41

-0.41] 0.02f 279] 177 076 [ 1.19

048] 099 0.7 |1.48 | 0.07 | 1.81

AT o

105



M SD

os9]109 [oe] oxs]ore [so] —  0.70 1.41

oafooe| |1 [ors]is] —>  1.02 1.07

AT o



M SD

os9]109 [oe] oxs]ore [so] —  0.70 1.41

oafooe| |1 [ors]iis] —>  1.02 1.07

— 0.84 0.74

AT o



AT o

M SD

-0.59]1.99 |-0.26] 0.38]

oifan] — 0,70 1.41

o076[119 | ———p 1,02 1.07

EDm

— 0.84 0.74

(CCIIIT- ™)

SD

108



M SD

0s9] 1.9 [-0e6] 038[01c [s10]| — 0,70 1.41

oafooe| |1 [ors]iis] —>  1.02 1.07

— 0.84 0.74

N\ I v )

-

-092] 0.92 |-1.11]-0.23] -0.37) 1.70

-1.33}-0.94] 1.66 [ 0.70 [-0.25] 0.16




Next is the Feed-Forward layer.

-0.92) 0.92-1.11]-0.23] -0.37] 1.70

-1.33]-0.94 1.66 | 0.70 |-0.25 0.16

110



The Feed-Forward layer is a simple neural network consisting of
two layers and using ReLU() as the activation function.

FFN(z) = ReLU(zW, + by )W, + b,

RelLU function

-0.92) 0.92-1.11]-0.23) -0.37] 1.70

-1.33}-0.94] 1.66 [ 0.70 |-0.25] 0.16

|-|.79| 021 |—tmo 086 I:u.sal 132
Forard

111



Wi

031|020 |-0.35}-0.07}-0.13] 0.23

0.15 | 0.34 |-0.38]-0.29] -0.30] -0.28|

+ R

-1.33|-0.94] 1.66 | 0.70 |-0.25] 0.16 X

-0.40] 0.10-0.20] 0.14 |-0.20] 0.19

1.20 |-0.85]-0.39] 0.93|-0.70] -1.2¢]

-0.89]-0.40] 1.10] 0.47 | 0.11 | 0.31




Applying the RelLU activation function...

CEEECE

-0.92) 0.92 |-1.11]-0.23] -0.37 1.70

-1.33]-0.94 1.66 | 0.70 |-0.25 0.16 X

-0.40] 0.10-0.20] 0.14 |-0.20 0.19

0. 12|-0.12] 0.29

1.20 |-0.85]-0.39] 0.93 }-0.70]-1.3¢]

ReLU (EELELLE

0.02|-081

0.24 | 0.99 }-0.50 |-0.89]

113



Applying the RelLU activation function...

Wi

031|020 |-0.35}-0.07}-0.13 0.23

0.15 | 034 |-0.38]-0.29| -0.30]-0.28|

-0.92) 0.92 |-1.11]-0.23] -0.37 1.70
-0.28] 0.21] 017 |-0.27]-0.07} 0.21

oo 1ss oo oz ors] X +

-0.40] 0.10-0.20] 0.14 |-0.20] 0.19

-0.33}-0.00}-0.08]-0.12| -0.12| 0.29

1.20 |-0.85]-0.39] 0.93}-0.70]-1.3¢]

ReLl ’ ( -0.89|-0.40] 1.10] 0.47 | 011 | 0.31

0.02|-0.81] 0.24 | 0.99 }-0.50 |-0.89|




Negative values become 0.

031|020 |-0.35}-0.07}-0.13 0.23

015034

.29

-0.28)

-0.92| 0.92 |-1.11]-0.23] -0.37] 1.70
-0.28] 0.21] 017 |-0.27]-0.07} 021

-1.33]-0.94 1.66 | 0.70 | -0.25 0.16 X +

-0.40] 0.10}-0.20] 0.14 |-0.20] 0.19




Then, by multiplying with the second layer’s weights and biases,
we obtain the final output of the Feed-Forward layer. The purpose
of this layer is to increase non-linearity, allowing the network to
better process and distinguish complex patterns (recall
multi-layer perceptrons!)

|-0.00] 0.39 | -0.00}-0.39]-0.37}-0.14

-0.34]-0.10}-0.24{ 033 |-0.40] -0.13}

[ Tl
0. . 5| 1
efefls] X
-0.41] 0.09 |-0.20}-0.06 | -0.22}-0.09
E-EET
TLLLL

031 |-0.41}-0.13}-0.17}-0.03]-0.20]

I [ O

-0.19}-0.08]-0.3¢] 0.40 |-0.12]-0.07]

-0.69] 0.36 |-0.37| 0.12]-0.34}-0.05

116



Next, we repeat the same Add & Normalize process.

(R30 & Norm

117



As before, we first calculate the sum of the two matrices.

Feed-Forward

Layer Output Matrix 1st Addition & Normalization

082|089 |-0.06] -0.4]-075f 0.1 -0.92] 0.2 |-1.11f-0.23) -037] 1.70 -1.74] 1.81 |-1.57]-0.65) .16 1.4
-0.19]-0.08[-0.36] 0.40|-0.12]-0.07] 4 |-1.:33|-0.94| 1.66 | 0.70 |-0.25 0.16 = |rs2fr0zf 130|110 |-037) 000
I—o.sel 036 |—o.37| o.ul—ovml—oosl |-1.79| 021 |-o.|ol 086 |—u.5n|mz| |-2 48| 057 I-a 47| 098 I-n.aAI 1.z7|

118



Then, we normalize the matrix again:

M Sb
-1.74] 1.81 | -1.57)-0.65}-1.16] 1.49 _0,30 1 .43
15g]1.02] 130 [ 11007 000 -0.07 1.03

CLLele] o6 128

SD

-1.01] 1.48 |0.89|-0.24}-0.60] 1.26

-1.41}-0.92) 1.33 | 1.13]-0.20] 0.15




This resulting matrix is the final output of the encoder.

Positional
Encoding

-1.01| 1.48 [-0.89]-0.24]-0.60 1.26

-1.41f-0.92] 1.33 | 113 |-0.29] 0.15

DECCEE

120



Now, let's move on to the Decoder.

Output
Probabilties

Positional
Encoding

Outputs

121



Just like the encoder, the decoder first performs word encoding
and positional encoding of the output (target) sequence.

Output
Probabilties

osiional Decoder input:  [{sos), |, am] — Index: [0, 6, 3]

Encoding

Decoder output target : [I, am, fine] —Index : [6, 3, 4]

Outputs

122



The process of word encoding and positional encoding is

identical to that in the encoder. In fact, the positional encoding
values can be reused from the encoder.

. pos pos
PEospziy = Sin(————;—)

21 PE(pos,2i+1) = COS( 21 )
100009modet 10000%modet
6
Positional A
@~ Encoding 'd N\

Output
Embedding

Outputs 6, IZ BSI 0. 74|O 20 |-1 3AI-045

0, (Sos)l 2. 31|»1 29| 0.21}1 24|1.86|o.os|

|-1:34-057-059
3, am | 046| 006| 0. 22|>1 25|-0.49|>0.34|

0 1 o 1 0 1

0 pos

& Posmonal
¢Q

e 084054005 1 0 1 1pos

ouputs 091-042 009 1 0 1 2pos
6

123



Here's how it looks:

I1*2A31|>1.29| 0.21 | 1A24| 1.86 | 0A06|

0 | 2.85 |>0.74|0.20 |*1.3A|*0.57|*0. :{
O|—0446|-0.06|-0.22|>1.25|-O.49|>0.34|

w

&) posiional

oding

Outputs

124



The Masked Multi-Head Attention operation in the decoder is
almost the same as in the encoder.

el

CEEEEE
EzEIzCT

-2.311-0.29 0.21}-0.24} 1.86 | 1.06
\

mum aieation

3.69]-0.24 0.24}-0.34-0.57] 0.67]

0.45]-0.44-0.13-0.24-0.440.66

Mask (optional)
Wl Head
o scaling
o

125



The Masked Multi-Head Attention operation in the decoder is
almost the same as in the encoder.

0.15] 037|021 fo.24] 0.37]-0.03 Q

-0.21] 0.24 028} 0.06 | 0.40 | 0.01

0.79f-1.0410.74] 0.87 |-0.8¢-0.37

[2oforfozfordrec] oo

|3,69|70.2110,1A|»o,34}o,57| 0.67| X [ozfoosfoos forr[orafos] = [os61fi.66 fr.01f1.091.23} 0.2
Em@ 039)-0.22] 0.21 [ 021 | 009 |01

035|020 fo.16 [-0.07) 001 |-0.17]

?‘"““““’" -0.15}0.33)-0.12]-0.30}-0.33| 0.06-

034 031 [-0.13|-0.24f 0.12] 015

0.10 0.26 | 030 | 0.33 | 0.08 f0.24
Softmax -2.31-0.29 0.21}-0.24] 1.86|1.06| 0.31}0.54 0.64] 0.25| 0.94}-0.1
0.1 fo.16|-0.01] 032 ] 0.11 Jo.02
3.69}-0.24 0.24f-0.34-057) 0.67| X = |o.2¢1.21}-0.98-1.24}0.94f-0.04
Mask (optional) -0.0s] 0.01f0.32 [-0.31] 0.09] 0.10

|’0.4+0.14>0.25|’ .4«10.65' -0.16]-0.08] 0.39 |-0.03]-0.11] 0.14 |D.1D|>0v18|>0.60|>0.51|Dv08|‘0v14|

0.23] 0.05 |-0.20]-0.40] 0.38]-0.29|

Watrix

multipication 028012 Jot0f-0.12)-0.17f 03

Q K v|23t029021f0.24)1.86|1.06 0200190 37p0.16]0.15 024 I1.14-0.23]0.05|0.700.15[0.16

013]-0.11|-038) 038 027  0:33
3.69}-0.24 0.24}-0.34-0.57] 0.67] X - 1.33]0.36[0.12-0.66-0.71}1.34]
-0.23] 0.28 [-0.20[ 0.1 |-0.27] 0.07

0.04 0.02 |0.13 fo.20 |-0.15]-0.3¢]




We multiply the Q and K matrices to create the attention matrix.

{sos|-

am

multiplication
Softmax
Mask (optional)

QK"

(sos) 1 am

Q

0.791-1.040.74] 0.87-0.84-0.37

0.61]1.66 [-1.01}-1.031.23 }-0.2¢

EETEEE

DEEEE
EEOTEEE
EICEEE

|-1.19-0.23]0.05|0.70{0.15|0.16

1.33)0.36}-0.12}-0.66-0.71}1.34]

RO

127



We then scale the matrix by dividing it by v/6, just as before, so
that the range of values changes accordingly.

(sos) 1 am -0.13] 0.00]-0.26
1 {sos)|-0.33| 0.01 |-0.63]
T 1 ape]e] = 6 = 0.56 |-0.43| 0.42
P ) 1
0.00 | 0.04| 0.08

128



Now, let's explore the key concept of the decoder’s multi-head
attention — masking.

129



The goal of the transformer decoder is to generate the output
word sequence, one token at a time (recall: language modeling).

Matrix
multiplication

e« / This is an awesome
° sentence that was
]
T ®
e ®
=
T t
multiplication
Q K Vv

130



While the encoder needs to consider all tokens in the input
sentence to understand the full meaning,

", Ilike this NLP class a lot
\‘ o

Mult-Head
Attention

131



the decoder generates output one word at a time.

Mask (optional)

| like this NLP
Q K \%

132



Therefore, it's natural that the decoder should NOT attend to
words that haven't been generated yet.

\
= Mask (optional)

=
nmultiplication

| like this NLP

e

133



To reflect this characteristic, the decoder applies a masking
mechanism during training.

Matrix
multiplication

134



The key idea is to hide future tokens so they do not affect the
current prediction.

135



like

Mask (optional)

like

136



like

this

NLP

class

lot

like this

NLP class

a

lot

137



Mask (optional)

like

this

NLP

class

lot

SO

like this

NLP class

a

lot

SO

138



When this masking algorithm is applied to the attention matrix,

we get:

(sos) | am -0.13] 0.00|-0.26

(sos)|-0.33| 0.01 -3}

= V6 = [0.56|-0.43] 0.42

137 f1.0a]1.02

Wiatiix
multiplication
am |ooo]oarfoz
Softmax 0.00
Mask (optional)

0.04] 0.08

139



We add -inf to the masked positions because, after passing
through the softmax layer, -inf becomes 0, effectively eliminating
attention to those positions.

—

Mask (optional) |2
Wl Head i

ol

i thon scaling

-

trix
Q K Vv

[ ool

EETTEE
EREEDE

1
Thttps://www.youtube.com/shorts/SrJN_hpiuAs 140



https://www.youtube.com/shorts/SrJN_hpiuAs

Feeding this matrix into the softmax layer gives us:

Mask (optional)

-1.19-0.23]0.05]0.70|0.150.16

1.33]0.36-0.12}-0.66-0.71} 1.34]

ERTETE

141



Then we multiply the two matrices as follows:

.
muliiplication __J2

Softmax |-1.19-0.23]0.05]0.700.15]0.16|

|-0.51}-0.071 0.00 0.33 }0.08}-0.29

|0.1 5 |0,0S |D.12 |:0A1 'IFO.2;|:0.58|
AN o scaling

o V
[F1.190.23}0.050.70]0.15]0.16
Q K Vv

1.33]0.36[0.12}-0.66-0.71F1.34]

COREEE

142



Next, we concatenate the resulting matrices (if needed):

o concatenate|:
multplcation

[-1.19-0.23]0.05]0.70]0.15]0.16
Softmax

0.51}-0.070.00] 0.33}-0.08}-0.24

eloepforforte]

Mask (optional)
T
Multi-He i
e scaling

=

Q K Vv

143



We then multiply again to produce the final matrix of the masked
multi-head attention.

A)

W
L

Fully
connected
Layer

concatenate
-
multiplication ]2

-0.10]-030 0.13 [ 0.31 [ 030 | 0.1

I-ms{-o.zalo.os|0.7n|n.15|o_15| -020]-022]-031-0.01 035} 020 |0_46| ol.g_yl_g_w*g_wqg_zzl
e R o o o o e

030 -00s|-03q] 025 |08 [0
|0.15|o.03|o.12|:0.ﬂ|:0.z;|:0.59| foz4o.1¢Jo1eforsfoodord
032] 003 036 004] 09 027

0.19]-0.37|-0.39] 0.26 | 0.06 |-0.02]

scaling

multiplication

H

144



We then apply the same Add & Normalize process again.

I*Z.3I|>0.Z 021 I>0.24| 1 .BSI 1 .06| |0,45I0.30 |>0,3¢|—0,14>(L14 O.ZZ|
|3.69 I-O.Z 0.24I>D.34l>0,57| 0.67| + |U.U9|0.23|>0.09|-0.11>0.I40.07|
| Uv45|-0 A4-D.1 0. 25|-0.440,66| |'0.24|0.14|0.14|>0.|3|-U401>0.14

ENTEDD
Norm([lofedd) = [l

CEETED

el [kl g

145



The decoder’s second multi-head attention operates the same
way as the encoder’s, except for the inputs.

146



Here, the values of K and V are derived from the encoder’s final
output, multiplied by a 6x6 matrix.

Softmax
Mask (optional)
\

scaling

multiplication_
T
EE
- Q K
o efos|odea]iz]  [roiafosfoafon]izs
o] oafors|  [rafes]is] s o] o
-1.81] 0.57 |[-0.24] 0.89-0.53] 1.12 -1.81] 0.57 J-0.24] 0.89]-0.53] 1.12

147



The value of Q comes from the output of the decoder’s previous
Add & Norm layer. In other words, the decoder determines
which parts of the encoder’s output (K, V) to attend to, based
on the context it has generated so far (Q)-similar to attention

e
- |-1.69-0.04-0.204-0.42 1.371.02
______ ¥ |2.13}0.37}-0.24-0.71]-0.89 0.10|
.. £ EEECEE
=11
A A A& || e Q K Vi
1 ¢+ 4

B & @/

1.69}-0.08f-0.20-0.44 1.37| 1.02
-1.01] 1.48 [-0.89|-0.24f-0.60] 1.26 -1.01] 1.48 }o.80|-0.24)-0.60] 1.26

2.13f0.37}0.29f0.71f08s{0.10
-1.41f-0.02] 1.33 | 1.13 [ -0.29] 015 -1.41f-0.02] 1.33 ] 1.13 |-0.29] 015

076}0.70f.23 fo.s2}1.16] 1.69
-1.81) 057 |-0.24] 0.89|-0.53] 1.12 -1.81] 0.57 |-0.24] 0.89|-0.53] 1.12

148



Assume the final output of this multi-head attention looks as
follows:

]

concatenate

-0.42) 0.09 | 0.1 -0.37]-0.05 0.03

-0.42| 0.05| 0.17 f0.37 | -0.13] 0.10

Tt
muliplication

-0.42] 0.04| 0.18 |-0.37]-0.14f 0.11
\

& o

1.69}-0.08}-0.20-0.44 1.37| 1.02
-1.01 1.48 |o.89|-0.24}-0.60] 1.26

Mask (optional)
scaling
multiplication

-1.01] 1.48 |-o.89|-0.24f-0.60] 1.26

-1.41f-0.92] 1.33 | 1.13 | -0.29] 0.1 -1.41f-0.02] 133 | 1.

2.3f0.37}0.20f0.71}0.85{0.10
3|-029] 015

o076o.70f.23 fo.sz2}1.16] 1.69
-1.81) 0.57 |-0.24] 0.89|-0.53] 112 -1.81) 0.57 |-0.24] 0.89|-0.53] 1.12

149



The same computational process is repeated, so details are
omitted here.

150



Finally, the last linear and softmax layers produce the final output
probabilities.

151



If the decoder output matrix at this stage looks like this:

Output
Probabilties
Softmax

Thear

-1.90] 057 | 0.36 f-0.72) 0.77 | 0.91

198 f-0.24] 0.20 |18 fo.77| 001

0.10 f0.51| 094 |-1.27|-0.85 1.58

152



The linear layer projects it back to the full vocabulary size (=11).

Output
Probabilties

-0.00]-039}-0.71] 0.19 | 0.57|-0.41| 0.64

133 1.06 |-0.73] 056 0.25 J-071] 0.05

Linear Layer

057|036 |-0.72 077 | 0.91

o.24] 0.20 f1.18 Fo.77| 0.01

0.10 f0.51 | 094 |-1.27]-0.85] 1.58




The softmax function then produces the final output probabilities.

Output
Probabilties

032]0.05| 0.07 | 0.07 | 0.06] 0.04 | 0.03 [ 0.08| 0.11 | 0.09

012

0.09) 0.13] 0.03) 0.10] 0.02

0.23[0.04 | 0.14 0.10] 0.04

.08

[ezs]eosos[ocsoar[oss]oce o] orrocaf oce]

t
Softmax

162 |-0.30] 0.14 | 0.13 |-0.09}-0.39}-0.71 ] 0.19 | 0.57|-0.41| 0.64

0.08) 0.46]-0.89) 0.22 |-1.33]

1.06 |-0.73] 056 | 0.25|-0.71] 0.05

D EEE

Linear Layer

-1.90] 057 | 0.36 [-0.72) 0.7 | 0.91

198 [-0.24] 0.20 |1.18 }0.77| 0.01

154



Finally, the predicted outputs are compared with the
ground-truth labels (e.g., 6, 3, 4).

032 ] 0.05 | 0.07 | 0.07 | 0.06] 0.04| 0.03 ] 0.08 | 0.11 | 0.08]0.12

0.09) 0.13] 0.03| 0.10] 002 0:23) 0.04 | 0.14] 0.10| 0.04| 0.08

[6] |
o o] T
|m|m|m|m|m|¥g|m|a.4|m|m|m| —p 3] am

[4] fine
Softmax

014013 |-0.00-039}-0.71 ] 0.1 | 0.57

t
Probabilties

-0.41 0.64

-0.89] 0.22 |1.33] 1.06 |-0.73] 056 | 0.25 |-0.71) 0.05

176 1.16 |-1.30| 0.82] 0.63|-0.78 0.22

Linear Layer

-1.90] 057 | 0.36 [-0.72) 0.77 | 0.01

198 [-0.24] 0.20 118 fo.77| 0.01

0.10 |0.51 | 0.94-1.27]-085] 1.58

155



Using a loss function (e.g., cross-entropy) and
backpropagation, the model updates all weight parameters
across every layer — this is the learning process of the
Transformer.

0.32]0.05| 0.07 | 0.07 | 0.6} 0.04 | 0.03] 0.08 | 0.11 | 0.08 0,12

009 013] 0.03| 0.10] 0.02 0.23| 0.04 | 0.14] 010 0.04| 0.08

[6] |

e e ) ) ™ Sy [31 am
Povagites T [4] fine

Softmax

162 |-0.30] 0.14 | 0.13 |-0.09}-0.35}-0.71 ] 0.19 | 0.57|-0.41| 0.64

0.08) 0.46|-0.89] 0.22 |-1.33| 1.06 | -0.73] 0.56 | 0.25 |-0.71] 0.05

EECEEDEEEEE

Linear Layer

-1.90] 0.57 | 0.36 [-0.72) 0.77 | 0.91

198 [-0.24] 0.20 118 f0.77| 0.01

156






Wrap up




* We explored the architecture of the Transformer model.

158



* We explored the architecture of the Transformer model.
+ Do we need to train this model entirely from scratch?

158



* We explored the architecture of the Transformer model.
+ Do we need to train this model entirely from scratch?

* No. We can take advantage of powerful pre-trained language
models that have already learned general language patterns
from massive datasets.

158



* We explored the architecture of the Transformer model.
+ Do we need to train this model entirely from scratch?

* No. We can take advantage of powerful pre-trained language
models that have already learned general language patterns
from massive datasets.

+ We will experiment with these models using Hugging Face
(open-source library) in the lab session.

158



Attention in transformers

Would be a nice recap:
https://www.youtube.com/watch?v=eM1x5fFNoYc Any hints
from the video clip?

159


https://www.youtube.com/watch?v=eMlx5fFNoYc

	Review: Attention
	The transformer model
	Understanding the Transformer with example
	Wrap up

