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Review: Attention



Seq2Seq: Problem

It becomes quite difficult to pack all the information of the input
sequence into a fixed-length context vector.

This is called Bottleneck problem.
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Seq2Seq: Problem

The attentionmechanism was introduced to address this
problem.
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Seq2Seq: Problem

When the decoder generates each word in the output sequence,
the attention mechanism
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Seq2Seq: Problem

is an algorithm that makes it “attend” to which parts of the input
sequence are important.
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Attention

Suppose the input sequence comes in like this:
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Attention

We store the hidden state for each input word separately.
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Attention

We build a context vector and feed it to the decoder,
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Attention

and obtain the decoder’s hidden state and output as follows.
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Attention

The similarity between two vectors works as a measure that
determines the relationship between two states.
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Attention

We focused on the simplest method: the dot product.
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Attention

For example:
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Attention

For example:
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Attention

For example:
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Attention

Suppose the encoder hidden state is (0.8, 0.2) and the decoder
hidden state is (0.7, 0.3).
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Attention

Suppose the encoder hidden state is (0.8, 0.2) and the decoder
hidden state is (0.7, 0.3).
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Attention

Then the attention score s1 becomes 0.62 through the following
dot-product computation.
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Attention

Next, we compute the softmax of each attention score
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Attention

to convert the attention scores into a probability distribution
and normalize them.
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Attention

Next, we multiply each attention score by its corresponding input
hidden state.
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Attention

The multiplication has the effect of amplifying the input hidden
states according to their attention weights.
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Attention

For example, if the attention scores after the softmax layer are as
follows—
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Attention

For example, if the attention scores after the softmax layer are as
follows—
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Attention

Then the input state (0.8, 0.2) multiplied by 0.7 becomes (0.56,
0.14).
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Attention

Now, take these attention-weighted input hidden states,
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Attention

sum them up, and you obtain a new context vector.
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Attention is a general deep learning technique

• Attention has become the powerful, flexible, general way
pointer and memory manipulation in deep learning models.
(A new idea from 2010).
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The transformer model



Recall

Eventually led to the development of the Transformermodel.
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Attention in transformers

Multi-head attentions
https://www.youtube.com/watch?v=eMlx5fFNoYc Any hints
from the video clip?
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RNNs: Long-dependency problem

• RNNs process input sequentially, one token at a time,
passing information through hidden states.

• We discussed the long-dependency problem.
• Somewhat solved through attention algorithms?

30



RNNs: Long-dependency problem

• RNNs process input sequentially, one token at a time,
passing information through hidden states.

• We discussed the long-dependency problem.

• Somewhat solved through attention algorithms?

30



RNNs: Long-dependency problem

• RNNs process input sequentially, one token at a time,
passing information through hidden states.

• We discussed the long-dependency problem.
• Somewhat solved through attention algorithms?

30



RNNs: Lack of parallelizability

• RNNs process input step by step — each hidden state
depends on the previous one.

• This means both the forward and backward passes require
O(sequence length) sequential operations.

• GPUs are great at performing many independent
computations in parallel, but RNNs don’t allow this because
future states can’t be computed until past states are done.

• As a result, training RNNs on very large datasets becomes
slow and inefficient.
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RNNs+Attention!

• Seq2Seq (RNN) models: Attention connects the decoder to
the encoder — each decoder step selectively focuses on
encoder hidden states.
(Cross-attention only; still sequential)

• In Transformers, attention also occurswithin a single
sentence— all words attend to all words in the previous
layer.
(Self-attention + Cross-attention)

• This means every word can interact with every other word
directly — no need to wait for sequential computation.

• As a result, Transformers overcome both
long-distance dependency and lack of parallelizability.

• Notes. This was NOT an entirely new ways of looking NLP
problems (e.g., probabilistic language models → neural
network), but made a huge progress in the field.
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Parallelization in Transformers

• Self-Attention: All tokens attend to all tokens in the same
layer simultaneously.

• Unlike RNNs, Transformer layers do not depend on previous
hidden states; each token’s representation is updated in
parallel.

• This allows GPUs to perform all attention computations at
once using matrix multiplication.

• Training and inference are therefore much faster, especially
for long sequences and large datasets.
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From Dot Product to Soft Lookup

• Recall how we calculated the dot product between the
decoder state (query) and each encoder hidden state (key) in
the Seq2Seq attention.

• That dot product measured how similar the query was to
each key — giving us attention weights after softmax.

• In Transformers, the same idea is extended: every token’s
representation acts as a query, looking up information from
a set of keys and values (soft, averaging lookup in a
key–value store) ⇒ The dot product attention becomes a
fuzzy retrieval mechanism that allows each token to access
information from all others in parallel.
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Understanding the
Transformer with example



The structure of the Transformer (proposed by Vaswani et al.,
2017) looks like this:
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Before diving into the detailed calculations, let’s first take a look
at the overall structure.
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The Transformer model can be broadly divided into two main
parts.
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Here we see the encoder part,
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and the decoder part.
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If we look closely at the entire Transformer model,
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we can see that the same kinds of blocks are repeatedly
stacked.
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Embedding layer
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Multi-head attention
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Add & Norm layer
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and also the Feed-Forward layer.
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So, even though the Transformer may look complicated at first
glance,
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it’s actually made up of a few components that are repeatedly
stacked.
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By examining each part step by step, we can fully understand
how the model works.
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From now on, let’s use a simple example to explore how the
Transformer learns.
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To train a Transformer model, the very first step is to create a
dataset.
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Next, we extract all the words from the dataset to build a
vocabulary.

51



Then, we assign each word (or token) a unique number (index) so
that the model can process it as input data.
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We assign each word (token) a unique index to convert it into a
form that the model can handle.
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For simplicity, let’s assume a very small number of tokens when
assigning these indices.
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When an input sentence like this comes in, the first step is word
embedding.
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The input embedding block takes input tokens like [5, 8, 9] and
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outputs the corresponding embedding vectors for each word.
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The embedding layer compresses, for example, 11 words into
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dense vectors of length 6.
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• In the original paper, 37,000 words were reduced to
512-dimensional embeddings. (So, it doesn’t have to be 6 as
in our example.)

• It’s important to understand that this dimensional
embeddings allow the model to efficiently process and
represent a large number of words internally.
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Next is positional encoding. The Transformer uses a unique way
to encode the position of words within a sentence.
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Why do we need this?

Self-attention alone does not capture word
order (e.g., RNNs); it treats inputs as a set, not a sequence.
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We encode the position of each word based on the following
formulas.
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Let’s take a closer look at these formulas.
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In this example, the value of 𝑑model is 6 (the dimensionality of the
model).
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And the variable pos takes the values 0, 1, and 2 in order.
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i = 0, 1, 2 denotes the dimension index used for even (2i) and odd
(2i+1) components. For even dimensions, we apply this formula:
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And for odd dimensions, we apply this formula:
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We can now compute the positional encoding values as follows:
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Once we have these positional embeddings, we simply add them
to the input embeddings:
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By adding them together, we obtain the combined input +
positional embedding vectors.
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By adding them together, we obtain the combined input +
positional embedding vectors.
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Now, it’s time to feed this combined input–position matrix into
themulti-head attention, which is the core component of the
Transformer.
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Again, the Transformer’s multi-head attention is different from
the attention mechanism used in traditional seq2seq models.
While seq2seq attention focuses on aligning the input and output
sequences,
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the Transformer’s attention captures the relationships between
words within the same input sentence.
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The structure of the multi-head attention mechanism used for
self-attention looks like this:
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We make three copies of the input + positional encoding matrix.

Why? This is done to create Query (Q), Key (K), and Value (V)
matrices — each representing a different projection of the same
input for the attention mechanism.
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To obtain the Q matrix, we create the following 6×6 weight matrix
(randomly initialized).
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And then we perform matrix multiplication to obtain the Q
(Query) matrix.
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To compute the K (Key) matrix, we create another 6×6 weight
matrix (randomly initialized) and multiply it with the input.
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Using the same process, we perform another matrix
multiplication to obtain the V (Value) matrix.
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Now, we have the three inputs of the multi-head attention layer
— Q (Query), K (Key), and V (Value).
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Next, we perform the matrix multiplication between Q and K. The
formula for this operation is as follows:
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When we plug in the matrix values and calculate,
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we can obtain the result as follows:
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Next, we apply scaling, which divides the matrix by
√

6, since in
this example the value of 𝑑model is 6.
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Next, we apply scaling, which divides the matrix by
√

6, since in
this example the value of 𝑑model is 6.
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Since the mask layer is not used in the encoder, we will skip it
here.

88



The next softmax layer converts the matrix values into
probabilities.
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This 3×3 matrix represents the self-attention weights.
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This matrix numerically shows how each word in the input is
related to every other word.
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Thus, word pairs with higher relevance receive higher attention
values, while those with lower relevance receive smaller values —
as the model learns these relationships.
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While traditional attention models focused on relationships
between the input sequence and output sequence, self-attention
takes the same input matrix and feeds it into two separate
networks to produce the Q and K matrices.
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Amazingly, by simply multiplying these two matrices, the model
can represent the correlations between words within a sentence.
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Because the model processes all words in parallel rather than
sequentially, it achieves much faster computation.
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Even for long sentences, the model can calculate the attention
between all pairs of words without bias or loss of information.
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This self-attention mechanism is the core structure that made
today’s large language models (LLMs) possible.
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So, what about the final matrix multiplication?
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We multiply this by the V matrix to obtain the final output — a
self-attended embedding that combines (1) input, (2) positional,
and (3) attention information.
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So far, we’ve assumed a single-head attention for simplicity, but in
reality, the Transformer computes multi-head attention — the
original paper uses 8 heads.
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When using multiple heads, the model splits the dimensions of Q,
K, and V according to the number of heads, performs
self-attention separately for each head, then concatenates the
resulting matrices and passes them through a fully connected
layer to produce the final output of multi-head attention.
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Next, we move on to the addition and normalization layer.
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The addition step adds the multi-head output matrix to the initial
input + positional embedding.
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Let’s assume that the resulting matrix looks like this:
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Next, for the normalization step, we first calculate the mean and
standard deviation for each column.

105



106



107



108



109



Next is the Feed-Forward layer.
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The Feed-Forward layer is a simple neural network consisting of
two layers and using ReLU() as the activation function.

FFN(𝑥) = ReLU(𝑥𝑊1 + 𝑏1)𝑊2 + 𝑏2
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Applying the ReLU activation function...
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Applying the ReLU activation function...
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Negative values become 0.
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Then, by multiplying with the second layer’s weights and biases,
we obtain the final output of the Feed-Forward layer. The purpose
of this layer is to increase non-linearity, allowing the network to
better process and distinguish complex patterns (recall
multi-layer perceptrons!)
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Next, we repeat the same Add & Normalize process.
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As before, we first calculate the sum of the two matrices.
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Then, we normalize the matrix again:
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This resulting matrix is the final output of the encoder.
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Now, let’s move on to the Decoder.
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Just like the encoder, the decoder first performsword encoding
and positional encoding of the output (target) sequence.
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The process of word encoding and positional encoding is
identical to that in the encoder. In fact, the positional encoding
values can be reused from the encoder.
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Here’s how it looks:
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TheMasked Multi-Head Attention operation in the decoder is
almost the same as in the encoder.
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TheMasked Multi-Head Attention operation in the decoder is
almost the same as in the encoder.
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We multiply the Q and K matrices to create the attention matrix.
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We then scale the matrix by dividing it by
√

6, just as before, so
that the range of values changes accordingly.
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Now, let’s explore the key concept of the decoder’s multi-head
attention —masking.
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The goal of the transformer decoder is to generate the output
word sequence, one token at a time (recall: language modeling).
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While the encoder needs to consider all tokens in the input
sentence to understand the full meaning,
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the decoder generates output one word at a time.
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Therefore, it’s natural that the decoder should NOT attend to
words that haven’t been generated yet.
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To reflect this characteristic, the decoder applies a masking
mechanism during training.
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The key idea is to hide future tokens so they do not affect the
current prediction.
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138



When this masking algorithm is applied to the attention matrix,
we get:

139



We add –inf to the masked positions because, after passing
through the softmax layer, –inf becomes 0, effectively eliminating
attention to those positions.

1
1https://www.youtube.com/shorts/SrJN_hpiuAs 140
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Feeding this matrix into the softmax layer gives us:
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Then we multiply the two matrices as follows:
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Next, we concatenate the resulting matrices (if needed):
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We then multiply again to produce the final matrix of the masked
multi-head attention.
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We then apply the same Add & Normalize process again.
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The decoder’s second multi-head attention operates the same
way as the encoder’s, except for the inputs.
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Here, the values of 𝐾 and 𝑉 are derived from the encoder’s final
output, multiplied by a 6×6 matrix.
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The value of 𝑄 comes from the output of the decoder’s previous
Add & Norm layer. In other words, the decoder determines
which parts of the encoder’s output (K, V) to attend to, based
on the context it has generated so far (Q)-similar to attention
in RNNs.
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Assume the final output of this multi-head attention looks as
follows:
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The same computational process is repeated, so details are
omitted here.
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Finally, the last linear and softmax layers produce the final output
probabilities.
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If the decoder output matrix at this stage looks like this:
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The linear layer projects it back to the full vocabulary size (=11).
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The softmax function then produces the final output probabilities.
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Finally, the predicted outputs are compared with the
ground-truth labels (e.g., 6, 3, 4).
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Using a loss function (e.g., cross-entropy) and
backpropagation, the model updates all weight parameters
across every layer — this is the learning process of the
Transformer.
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Wrap up



Wrap-up

• We explored the architecture of the Transformer model.

• Do we need to train this model entirely from scratch?
• No. We can take advantage of powerful pre-trained language
models that have already learned general language patterns
from massive datasets.

• We will experiment with these models using Hugging Face
(open-source library) in the lab session.
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Attention in transformers

Would be a nice recap:
https://www.youtube.com/watch?v=eMlx5fFNoYc Any hints
from the video clip?
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