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Review: Attention



Seq2Seq: Problem

It becomes quite difficult to pack all the information of the input
sequence into a fixed-length context vector.

This is called Bottleneck problem.



Seq2Seq: Problem

The attention mechanism was introduced to address this
problem.



Seq2Seq: Problem

When the decoder generates each word in the output sequence,
the attention mechanism



Seq2Seq: Problem

is an algorithm that makes it “attend” to which parts of the input
sequence are important.



Suppose the input sequence comes in like this:




We store the hidden state for each input word separately.
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We build a context vector and feed it to the decoder,
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and obtain the decoder’s hidden state and output as follows.
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The similarity between two vectors works as a measure that
determines the relationship between two states.
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We focused on the simplest method: the dot product.
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For example:
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For example:
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13



For example:
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Suppose the encoder hidden state is (0.8, 0.2) and the decoder
hidden state is (0.7, 0.3).
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Suppose the encoder hidden state is (0.8, 0.2) and the decoder
hidden state is (0.7, 0.3).
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Then the attention score s1 becomes 0.62 through the following
dot-product computation.
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Next, we compute the softmax of each attention score
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to convert the attention scores into a probability distribution
and normalize them.
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Next, we multiply each attention score by its corresponding input
hidden state.
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The multiplication has the effect of amplifying the input hidden
states according to their attention weights.
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For example, if the attention scores after the softmax layer are as

follows—
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For example, if the attention scores after the softmax layer are as

follows—
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Then the input state (0.8, 0.2) multiplied by 0.7 becomes (0.56,
0.14).
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Now, take these attention-weighted input hidden states,
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sum them up, and you obtain a new context vector.
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Attention is a general deep learning technique

+ Attention has become the powerful, flexible, general way
pointer and memory manipulation in deep learning models.
(A new idea from 2010).
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The transformer model



Eventually led to the development of the Transformer model.
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Attention in transformers

Multi-head attentions
https://www.youtube.com/watch?v=eM1x5fFNoYc Any hints
from the video clip?
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https://www.youtube.com/watch?v=eMlx5fFNoYc

RNNs: Long-dependency problem

* RNNs process input sequentially, one token at a time,
passing information through hidden states.
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RNNs: Long-dependency problem

* RNNs process input sequentially, one token at a time,
passing information through hidden states.

* We discussed the long-dependency problem.
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RNNs: Long-dependency problem

* RNNs process input sequentially, one token at a time,
passing information through hidden states.

* We discussed the long-dependency problem.
+ Somewhat solved through attention algorithms?
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RNNs: Lack of parallelizability

* RNNs process input step by step — each hidden state
depends on the previous one.
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RNNs: Lack of parallelizability

* RNNs process input step by step — each hidden state
depends on the previous one.

* This means both the forward and backward passes require
O(sequence length) sequential operations.
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RNNs: Lack of parallelizability

* RNNs process input step by step — each hidden state
depends on the previous one.

* This means both the forward and backward passes require
O(sequence length) sequential operations.

* GPUs are great at performing many independent
computations in parallel, but RNNs don't allow this because
future states can't be computed until past states are done.
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RNNs: Lack of parallelizability

* RNNs process input step by step — each hidden state
depends on the previous one.

* This means both the forward and backward passes require
O(sequence length) sequential operations.

* GPUs are great at performing many independent

computations in parallel, but RNNs don't allow this because
future states can't be computed until past states are done.

As a result, training RNNs on very large datasets becomes
slow and inefficient.
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RNNs+Attention!

+ Seq2Seq (RNN) models: Attention connects the decoder to
the encoder — each decoder step selectively focuses on
encoder hidden states.

(Cross-attention only; still sequential)
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RNNs+Attention!

+ Seq2Seq (RNN) models: Attention connects the decoder to
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encoder hidden states.
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 In Transformers, attention also occurs within a single
sentence — all words attend to all words in the previous
layer.

(Self-attention + Cross-attention)
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directly — no need to wait for sequential computation.

* As aresult, Transformers overcome both
long-distance dependency and lack of parallelizability.

32



RNNs+Attention!

+ Seq2Seq (RNN) models: Attention connects the decoder to
the encoder — each decoder step selectively focuses on
encoder hidden states.

(Cross-attention only; still sequential)

 In Transformers, attention also occurs within a single
sentence — all words attend to all words in the previous
layer.

(Self-attention + Cross-attention)

* This means every word can interact with every other word
directly — no need to wait for sequential computation.

* As aresult, Transformers overcome both
long-distance dependency and lack of parallelizability.

* Notes. This was NOT an entirely new ways of looking NLP
problems (e.g., probabilistic language models — neural
network), but made a huge progress in the field.
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Parallelization in Transformers

 Self-Attention: All tokens attend to all tokens in the same
layer simultaneously.
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 Self-Attention: All tokens attend to all tokens in the same
layer simultaneously.

+ Unlike RNNs, Transformer layers do not depend on previous
hidden states; each token's representation is updated in
parallel.
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Parallelization in Transformers

 Self-Attention: All tokens attend to all tokens in the same
layer simultaneously.

+ Unlike RNNs, Transformer layers do not depend on previous
hidden states; each token's representation is updated in
parallel.

* This allows GPUs to perform all attention computations at
once using matrix multiplication.
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Parallelization in Transformers

+ Self-Attention: All tokens attend to all tokens in the same
layer simultaneously.

+ Unlike RNNs, Transformer layers do not depend on previous
hidden states; each token's representation is updated in
parallel.

* This allows GPUs to perform all attention computations at
once using matrix multiplication.

Training and inference are therefore much faster, especially
for long sequences and large datasets.
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From Dot Product to Soft Lookup

* Recall how we calculated the dot product between the
decoder state (query) and each encoder hidden state (key) in
the Seq2Seq attention.
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From Dot Product to Soft Lookup

* Recall how we calculated the dot product between the
decoder state (query) and each encoder hidden state (key) in

the Seq2Seq attention.

* That dot product measured how similar the query was to
each key — giving us attention weights after softmax.
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From Dot Product to Soft Lookup

* Recall how we calculated the dot product between the
decoder state (query) and each encoder hidden state (key) in
the Seq2Seq attention.

* That dot product measured how similar the query was to
each key — giving us attention weights after softmax.

+ In Transformers, the same idea is extended: every token's
representation acts as a query, looking up information from
a set of keys and values (soft, averaging lookup in a
key-value store) = The dot product attention becomes a
fuzzy retrieval mechanism that allows each token to access
information from all others in parallel.
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Understanding the
Transformer with example



The structure of the Transformer (proposed by Vaswani et al.,

2017) looks like this:
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Before diving into the detailed calculations, let’s first take a look
at the overall structure.
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The Transformer model can be broadly divided into two main

parts.
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Here we see the encoder part,
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and the decoder part.
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If we look closely at the entire Transformer model,
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we can see that the same kinds of blocks are repeatedly

stacked.
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Embedding layer

Positional
Encoding

Input Output
Embeddlng Embeddlng
Inputs Outputs

Positional
Encoding
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Multi-head attention

Multi-Head
Attention
Masked

Multi-Head Multi-Head
Attention Attention
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Add & Norm layer

Add & Norm

i

Add & Norm
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and also the Feed-Forward layer.

Feed
Forward

Feed
Forward
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So, even though the Transformer may look complicated at first

glance,
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it's actually made up of a few components that are repeatedly

stacked.
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By examining each part step by step, we can fully understand
how the model works.
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From now on, let’s use a simple example to explore how the
Transformer learns.

utput
Probabilities

Positional

A Encoding

Positional
Encoding
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To train a Transformer model, the very first step is to create a
dataset.

Dataset

‘how are you’, ‘i am fine’
‘iamfine’,  ‘how about
yourself’
Probabilities

Positional

Q Encoding

Positional

Encoding QF:
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Next, we extract all the words from the dataset to build a
vocabulary.

Dataset Vocab List
(S0S):

‘how are you’, ‘i am fine’ (EOS):

‘iamfine’,  ‘how about .
yourself’ * (PA_D)'
am:
fine:
how:
it
about:
are:
you:
yourself:




Then, we assign each word (or token) a unique number (index) so
that the model can process it as input data.

Dataset Vocab List
‘ D (s0s):
how are you’, ‘i am fine’ (EOS):
‘iamfine’,  ‘how about * .
yourself (PAD):
am:
fine:

you:

0
1
2
3
4
how: 5
6
7
8
: 9
yourself: 1

o




We assign each word (token) a unique index to convertitinto a
form that the model can handle.

Dataset Vocab List
9 b q _— (S0S):
how are you’, ‘i am fine’ (EOS):
‘lamfine’,  ‘how about PAD .
yourself ( X )
am:
fine:

you:
yourself:

Suppose that our task is to make a
model that can do such a Q&A

‘How are you?” @ I am fine’

0
1
2
3
4
how: 5
i 6
7
8
9
1

0
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For simplicity, let's assume a very small number of tokens when
assigning these indices.

Dataset Vocab List
4 D Clron (o0 P (S0s): 0
how are you’, ‘i am fine’ (EOS): 1
‘iamfine’,  ‘how about * .
yourself <PA_D) N 2
am:
about: 7
yourself: 10

Suppose that our task is to make a
model that can do such a Q&A

‘ P> <§08> am’
[5, =, 91> 10,°, 3]
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When an input sentence like this comes in, the first step is word

embedding.
Positional A)¢
Encoding y
Embedding
T O SO Eisan

‘How are you?” '™

[5, 8, 9]
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The input embedding block takes input tokens like [5, 8, 9] and
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Input
Embedding
Encoding O § &€ Encoding
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(5, 8, 9]

Positional () Positional
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outputs the corresponding embedding vectors for each word.

Positional
Encoding e

Inpt 5, how ozsloae 139{087—022'1.72'
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[5, 8, 9]
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The embedding layer compresses, for example, 11 words into
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dense vectors of length 6.

<o 0
€01
{PAD): 2
about: 7
yourself: 10

Positional Positional

Encodng (9 &€ Encoding

‘How are you?” ™"
Inputs Outputs
(5, 8, 9]

|l )

n
=
[=]
B3
T
o
N
|0}
o
®
<
i
w
_@_
o
o
|~
T
1<)
R
L
g
N




+ In the original paper, 37,000 words were reduced to
512-dimensional embeddings. (So, it doesn't have to be 6 as
in our example.)

{S0S): 0
{EOS): 1
{PAD): 2
about: 7
yourself: 10
Positional Ve A ~
Encoding
= 5, how |—o,25|o.86 |—1.3s|—o s7|—o zz|1 72|
RO ST 8, are [osfosd 22z osz[oas] oz
e , are [-0.91f-0.66 222 0.5 -
‘How are you?” "™
Inputs Outputs 9, you |-1_05|1,zs|0A15|o‘23|0.06|0443|

[5, 8, 9]
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* In the original paper, 37,000 words were reduced to
512-dimensional embeddings. (So, it doesn't have to be 6 as
in our example.)

+ It's important to understand that this dimensional
embeddings allow the model to efficiently process and
represent a large number of words internally.

(505): o
(EOS): 1

(PAD): 2

am: )

a‘bout: 7

yourself: 10

A
r N\
= 5, how |—o,25|o.86 |—1.3s|—o s7|—o zz|1 72|
Salhy ©¢ (et -0.91|-0.66] 2.22 0.35-0.2
‘How are you? "™ 8 are [0o00q222) 0520
s o 9, you |-1.05|1.28|0A15|0423|0.06|0443|
(5, 8, 9]
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Next is positional encoding. The Transformer uses a unique way
to encode the position of words within a sentence.

(S0S): 0
{EOS): 1
{PAD): 2
opos| | | | | ||
1 1 pos
bout: 7 p
yourself: 10 2 pos
- A
Positional
Encoding P f )
Input 5, how |—o.25|0.86 |—1 38| o.s7|»o.zz|1A72|
—
Inputs 8, are |—o491|—0.66|222 0A52|0.35 0420|




Why do we need this?
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Why do we need this? Self-attention alone does not capture word

order (e.g., RNNSs); it treats inputs as a set, not a sequence.

. po pos
PEpos2iy = sin( 23 ) PEpos,2i+1) = cos( 71 )
100009model 10000%model
= o T T T
(EOS): 1
(PAD): 2
: 1 pos
: 11
about: 7 2 pos
Joursef: 10 6
Positional
Encoding
—p 5, how |—o.25[0.86 I-1.3s|—o.s7|—0.22| 1.72 |
posiional (Y & Posiional
ncoding P encoding 8, are |—0.91|—0.66| 2,22|0.52|0.35|—o.20|
s o 9, you |—1,os|1.zs|0415|oA23|o,06|0,43|
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We encode the position of each word based on the following
formulas.

] pos pos
PEpos2iy = Sin(————=7—)  PEwpos2i+1) = €0S(——————)
10000%model 100009modet

0 pos
1 pos

2 pos
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Let's take a closer look at these formulas.

i pos _
PEpos2iy = Sin(———=7—) PE(posai+1) = cos(

10000%modet

0 1 2 3 4 5(d_model-1)
0 pos
1 pos

2 pos

oS
21
10000%modet

P,
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In this example, the value of d,,q4e is 6 (the dimensionality of the

model).

pos

PEpos2iy = Sin(in) PE(pos,2i+1) = €OS(—————7)
10000 6 10000 6
0 1 2 3 4 5(d_model-1)
0 pos
1 pos
2 pos
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And the variable pos takes the values 0, 1, and 2 in order.

pos

— )
10000[iii}

PE(pos,Zz) = Sin( PE(pos,2i+1) > ‘;OS(

pos
— i)
10000@

o1 2 3 4 5
0 pos
1 pos
2 pos
6

66



i=0, 1, 2denotes the dimension index used for even (2i) and odd
(2i+1) components. For even dimensions, we apply this formula:
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And for odd dimensions, we apply this formula:
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We can now compute the positional encoding values as follows:

WS UEEEEE NN NN EEEEEEEREEEEEEEEREEEEEEEE, W

! . pos ‘ : pos
P PEposaiy = sin(————;7—) & PEgoszir1) = COS(—————) ¢
: 10000%model & 10000%modet

............................................................................

Opos 0 1 0 1 o0 1
1pos 0.84 054005 1 0 1
2 pos 0917042009 1 0 1

H_J
6
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Once we have these positional embeddings, we simply add them

to the input embeddings:

Positional

Encoding
Opos 0 1 0 1 0 1 5, how |70,25|0.86 |—1.35|70.87|70.zz|1,7z|
1 pOs 0.84 0.54 0.05 1 0 1 8, are |*0.91|*0.66| 2,22|0A52|O,35 |*0.20|
2 pos 0.91-0.42 0.09 1 0 1 9, you |»1A05| 1.28 | 0.15|0423|0.06| 0A43|
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By adding them together, we obtain the combined input +
positional embedding vectors.

/

0 pos 0 1 0 1 0
1 pos 0.84 0.54 0.05 1 0

2 pos 0.91-042 009 1 | 0

0‘5 h0w| 025|o ssl 1. 3&+0,87|—0.22|1.72|
0.91[-0.66] 2.22| 0.52| 0.35

: poasreol fosdz22]os2] o]

29p¥9u | 1os|w 28|O15|0423|0.06|0.43|

-0.20|

7 L
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Encoding \
\

\
5, how| 0. zs|o 86| 1 3e| o.s7|—o,zz|1.7z|

8, are | 091| 066| 2. 22|0_52|0.35 I-O.20|

9, you | 1 05|1 2810.15 0.23|0.06| 0.43|
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By adding them together, we obtain the combined input +
positional embedding vectors.

0‘5 how| 025|o ssl 1. 3f+0,s7|70.22|1.72|
1 p&reol 0. 91| 0. eel 2. 22| o,sz|0_35

|*0.20|
ngxgu 0| 105|T 2810.15(0.23 0.06|0,43|
<
’ *\
7
¢ Positional > \
Vi Encoding R \
4 \
’ \
’
Opos 0 1 0 1 0 1 5, how| 025|086| 138| o.s7|—o.zz|1.7z|
1pos 084 054005 1| 0 1 8, are | 091| oee|zzz|o.sz|o.35|—c.zo|
2pos 091-042 009 1 0 1 9, you | 105|128|015|o.z3|0A06|0.43|
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Now, it's time to feed this combined input-position matrix into
the multi-head attention, which is the core component of the
Transformer.

|>0 25|1 86|—1 34 0. 13|> ZZI 2.72|
|>0 O7|>0 12|2 26|1 52 |0 35|080|

015|086|024|1 23|006|1 43|

S ' Positional
Encoding _?
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Again, the Transformer’s multi-head attention is different from
the attention mechanism used in traditional seq2seq models.

While seq2seq attention focuses on aligning the input and output
sequences,

S L4 Gracias
e 60 01
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the Transformer’s attention captures the relationships between
words within the same input sentence.

", I like this NLP class a lot
\‘ L4

Mult-Head
Attention
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The structure of the multi-head attention mechanism used for
self-attention looks like this:
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We make three copies of the input + positional encoding matrix.

-0.25] 1.86 [-1.38] 0.13-0.22) 2.72|

pemmnrerassmararaean, 0.07 foa2| 2.26] 152 | 035 ] 0.80

+ H Matrix H

rn : mltiplication :
i : -0.25| 1.86 |-1.38 0.13]-0.22] 2.72]
Ho.07 o2 2.26| 1.52 [ 035 ] 0.80
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We make three copies of the input + positional encoding matrix.

-0.25] 1.86 [-1.38] 0.13-0.22) 2.72|

pemmnrerassmararaean, 0.07 foa2| 2.26] 152 | 035 ] 0.80

+ H Matrix H

rn : mltiplication :
i : -0.25| 1.86 |-1.38 0.13]-0.22] 2.72]
Ho.07 o2 2.26| 1.52 [ 035 ] 0.80

- : : i
% : multiplcation H -0.25] 1.86 |-1.38] 0.13]-0.22] 272
ey : : 0.07}0.12] 2.26] 1.52 | 0.35] 080

. iooQ KoV

Why?



We make three copies of the input + positional encoding matrix.

-0.25] 1.86 [-1.38] 0.13-0.22) 2.72|

..................... 007 F0a2| 2.26] 152 | 035 0.80

o %
. : B

H Matrix H

: multiplication H

-0.25] 1.86 [-1.38] 0.13]-0.22 2.72|

Fo.o7fo.12 2.26] 1.52 | 0.35 | 0.80

e[l

-0.25] 1.86 [-1.38] 0.13]-0.22 2.72|

007012 2.26] 152 [ 0.35] 0.80

DEEEOE

Why? This is done to create Query (Q), Key (K), and Value (V)
matrices — each representing a different projection of the same
input for the attention mechanism.
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To obtain the Q matrix, we create the following 6x6 weight matrix
(randomly initialized).

037 ] 037|-0.19| 023 0.32] 0.21

0.30f-0.09 ] 0.35 [-0.10f-0.38] 0.21

EOEEEE
T
]

.....................
- el ]
. DEEEEm
e ool
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And then we perform matrix multiplication to obtain the Q
(Query) matrix.

— | rs6]-02s] 0sa]0s2]-131f 027

0.59 Jo.46]-025]-0.73) 0.47 | 0.19




To compute the K (Key) matrix, we create another 6x6 weight
matrix (randomly initialized) and multiply it with the input.

Q

1.56]-0.25] 0.54 | 0.52 [-131 027

0.59 |06 |-025]-0.73) 0.47 | 0.19

m
-0.18]-0.28) 0.35 |-0.39] 030 [ 0.37

-0.25] 1.86 |-1.38] 0.13]-0.22] 272

0.00 |[-0.14}-0350.12 Joo7 o0 1182|026 |-1.79)0.32 |-1.68

bo.o7fo.12] 2.26 1.52 | 0.35| 0.80

= |-042]-070]-0.56|-0.01] 0.32 |-0.28]
15|-0.32 0.28 |-0.09] 0.09 |-0.18]

; X
ECEEEE
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Using the same process, we perform another matrix
multiplication to obtain the V (Value) matrix.

1.56]-0.25] 054 | 0.52 [-131 027

0.59 |o.s|-025]-0.73) 0.47 | 0.19

-1.18]-0.52f 0.26 |-1.79] 0.32 |- 1.68

-0.42-0.70[ -0.56]-0.01] 0.32 |-0.28

022 |-0.21]-030f-0.23]-0.35] 0.13

0.7 012022 0.10 J-0.22 |-0.38]

-o.25] 1.85|-1.38] 0.13[-0.22) 272 -1.63 085 [-1.91[-0.47 | 0.25 |-1.38]

sofore] 2o a2 s o] X oot [0t [rsassog

-0.10[-0.10f-0.14 f-0.30 |-0.26 | -0.14

o.15] 086 | 0.24f 1.23[ 0.06 | 1.43 -0.67] 0.44 |-0.80-0.65 -0.41|-1.09}
0.23] 024 |-0.14f 0.01 Jo.a1 Jo.06

[ e
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Now, we have the three inputs of the multi-head attention layer
— Q (Query), K (Key), and V (Value).

EEDIEE
EREEEE
EETTEE
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Next, we perform the matrix multiplication between Q and K. The
formula for this operation is as follows:

059 J-0.46-0.25]-0.73] 0.47 | 019!

-1.18[-0.52| 0.26 |-1.79] 0.32 |-1.68

Q-KT

-0.42]-0.70|-0.56] -0.01 0.32 [-0.28

Mask (optional)

-1.63] 0.85 [-1.91Fo.a7 [ 0.25 |-1.38

024034 | 032 079 [-095f1.04

-0.67] 0.44 |-0.80 [-0.65] -0.41]-1.09)
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When we plug in the matrix values and calculate,

--— - ~

P s

o] W[ osaose[-131] 027

0.5 [os] B2s] 073 0.47] 019

| 4
|
v Kitransposed) ==m=—=
Q

Softmax

Mask (optional)

-0.25] 0.54 | 0.52[-131 027

-1.18]-0.52] 0.26 |-1.79f 0.32 [-1.68

-0.42]-0.70-0.56]-0.01] 0.32 |-0.28)

P




we can obtain the result as follows:

K (transposed)

Softmex Lo on] o]

= |os1]o32]0a0

064 [0.35 | 0.5

Mask (optional)
L]
scaling

QK"




Next, we apply scaling, which divides the matrix by /6, since in
this example the value of d,,qe IS 6.

wofon|on| = Vg

064|035 | 054
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Next, we apply scaling, which divides the matrix by /6, since in
this example the value of d,,qe IS 6.

013001 fo1s

025|013 016

= [wfom]w] = vg =

064|035 | 054

026 |0.14 | 022
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Since the mask layer is not used in the encoder, we will skip it
here.

013001 fo1s

064|035 | 054 0.26 |0.14 | 022
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The next softmax layer converts the matrix values into
probabilities.

013001 ]os 034 031]o3s

Softmax( Py PN P ) = [
T P P

031 .03 Jos7 \ 013|001

ok o) Q- KT = [wfae] = v = [

064 | 0.35 | 054




This 3x3 matrix represents the self-attention weights.

i|__Softmax

Mask (optional)

scaling

mutiscaion

<—

HH

how are you

034 ] 031035

036|032 033

035|031 034




This matrix numerically shows how each word in the input is

related to every other word.

Mask (optional)

i

how are you

034 0.31]03s

036|032 | 033

035 | 0.31 | 03a
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Thus, word pairs with higher relevance receive higher attention
values, while those with lower relevance receive smaller values —

as the model learns these relationships.

how are you
i ] how [oaa oo

are [o36032 |03

you |oas|oai|o3e
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While traditional attention models focused on relationships
between the input sequence and output sequence, self-attention
takes the same input matrix and feeds it into two separate
networks to produce the Q and K matrices.

-1.56]-0.25] 0.54 | 052 | -1.31) 0.27)

0.59 |0.46|-0.25)-0.73] 0.47 | 0.19

how are you

how [o.34 ] 0.31]03s

are [o36032 |03

you [o.3s |31 034 -1.18f-0.52] 0.26 |-1.79] 0.32 1.6}

-0.42]-0.70 -0.56-0.01 0.32 -0.28

025 1.86-1.38] 0.13]-0.22] 272! -1.63[ 085|191 f-047] 025 [-1.38

024034 | 032 fo.79 [-0.95f 1.04

0.07 f0.12| 2.26| 1.52 | 0.35 | 0.80
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Amazingly, by simply multiplying these two matrices, the model
can represent the correlations between words within a sentence.

Q

-1.56]-0.25] 0.54 | 0.52|-1.31) 0.27|

0.5 |0.46[-0.25)-0.73 0.47 | 0.10

how are you

l-0.39]-0.48 0.03]-0.16]-0.30 .16

Mt ......
multiplcation how 034 | 031]oas

are [o o]0 K
you [o3s o1 |oas \ 7“‘87&527”97‘ 55
v

x

CEEOEE
EDEDDED

-1.63) 085 [-1.91 f-0.47 ] 0.25 [-1.38

Mask (optional)

024034 | 032 f-o79-095f 1.04
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Because the model processes all words in parallel rather than
sequentially, it achieves much faster computation.

Q

-1.56]-0.25] 0.54 | 0.52|-1.31) 0.27|

0.5 |0.46[-0.25)-0.73 0.47 | 0.10

how are you
multiplcation how [0:34 | 0.31]03s

x

EEOEED
[ A
CEEOEE

4

Mask (optional)

v

L0.25] 1.86 |-1.38] 0.13]-0.22] 272 -1.63) 085 [-1.91 f-0.47 ] 0.25 [-1.38

are |0.36]0.32]033
you [o3s]o31]o3s
Al
v

#

007 f0.12| 2.26| 1.52 | 0.35 | 080 0241034 1032 [-079[-095[1.04

OEITEE
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Even for long sentences, the model can calculate the attention
between all pairs of words without bias or loss of information.

Q

-1.56]-0.25] 0.54 | 0.52|-1.31) 0.27|

0.5 |0.46[-0.25)-0.73 0.47 | 0.10

how are you

l-0.39]-0.48 0.03]-0.16]-0.30 .16

Mt ......
multiplcation how 034 | 031]oas

x

Mask (optional)

CEEOEE
EDEDDED

-1.63) 085 [-1.91 f-0.47 ] 0.25 [-1.38

are [o o]0 K
you [o3s o1 |oas \ 7“‘87&527”97‘ 55
v

024034 | 032 f-o79-095f 1.04

OEITEE
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This self-attention mechanism is the core structure that made
today’s large language models (LLMs) possible.

Q

-1.56]-0.25] 0.54 | 0.52|-1.31) 0.27|

0.5 |0.46[-0.25)-0.73 0.47 | 0.10

how are you

o o] oo [ore] o] 016

pani ......
mutighcaton how [ose Joa]oss

) NreE
: o [ TEDEO
A%

Mask (optional)
scaling

T

COEEEE
EEDCED

-1.63) 085 [-1.91 f-0.47 ] 0.25 [-1.38

025 1.86 |-1.38] 0.13[-0.22] 2.72

024034 | 032 f-o79-095f 1.04

007 f0.12| 2.26| 1.52 | 0.35 | 080

OEITEE




So, what about the final matrix multiplication?

-1.56]-0.25] 0.54 | 0.52 | -1.31) 0.27)

0.59 |o.46[-0.25)-0.73 0.47 | 0.10

how are you
0.39]-0.48 0.03]-0.16]-0.30] 0.16

how |0.34 | 0.31]03s

you [o.3s 031034 -1.18f-0.52] 0.26 |-1.79] 0.32 |-1.68]

-0.42]-0.70 -0.56]-0.01] 032 [-0.28

-0.77]-0.69] 0.09 [-0.85) 0.27 |-0.06|




We multiply this by the V matrix to obtain the final output — a
self-attended embedding that combines (1) input, (2) positional,

and (3) attention information.

how are you H
t e oes|rorfoarfoas el £ [ozoss [oss]-oes]oss]ra7

how o3¢ Joaross :
are [oseon]on X: o24foss Joszforsffossfrod] | = [orose o

you [oss[oa1 fosa :|—ns7|o.44}osnl—nsslruawl—v.nsl:

-1.18
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So far, we've assumed a single-head attention for simplicity, but in
reality, the Transformer computes multi-head attention — the
original paper uses 8 heads.
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When using multiple heads, the model splits the dimensions of Q,
K, and V according to the number of heads, performs
self-attention separately for each head, then concatenates the
resulting matrices and passes them through a fully connected
layer to produce the final output of multi-head attention.
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Next, we move on to the addition and normalization layer.

AT o
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The addition step adds the multi-head output matrix to the initial
input + positional embedding.
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Let's assume that the resulting matrix looks like this:

-0.59]1.99 |-0.86] 0.38] 0.18 2,10

-0.41] 0.02| 279] 1.77 [ 076|119

EEEDED

AT o
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Next, for the normalization step, we first calculate the mean and
standard deviation for each column.

M SD

[aliwoo]owee]on] —» 070  1.41

-0.41] 0.02f 279] 177 076 [ 1.19

048] 099 0.7 |1.48 | 0.07 | 1.81

AT o
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M SD

os9]109 [oe] oxs]ore [so] —  0.70 1.41

oafooe| |1 [ors]is] —>  1.02 1.07

AT o



M SD

os9]109 [oe] oxs]ore [so] —  0.70 1.41

oafooe| |1 [ors]iis] —>  1.02 1.07

— 0.84 0.74

AT o



AT o

M SD

-0.59]1.99 |-0.26] 0.38]

oifan] — 0,70 1.41

o076[119 | ———p 1,02 1.07

EDm

— 0.84 0.74

(CCIIIT- ™)

SD
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M SD

0s9] 1.9 [-0e6] 038[01c [s10]| — 0,70 1.41

oafooe| |1 [ors]iis] —>  1.02 1.07

— 0.84 0.74

N\ I v )

-

-092] 0.92 |-1.11]-0.23] -0.37) 1.70

-1.33}-0.94] 1.66 [ 0.70 [-0.25] 0.16




Next is the Feed-Forward layer.

-0.92) 0.92-1.11]-0.23] -0.37] 1.70

-1.33]-0.94 1.66 | 0.70 |-0.25 0.16
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The Feed-Forward layer is a simple neural network consisting of
two layers and using ReLU() as the activation function.

FFN(z) = ReLU(zW, + by )W, + b,

RelLU function

-0.92) 0.92-1.11]-0.23) -0.37] 1.70

-1.33}-0.94] 1.66 [ 0.70 |-0.25] 0.16

|-|.79| 021 |—tmo 086 I:u.sal 132
Forard
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Wi

031|020 |-0.35}-0.07}-0.13] 0.23

0.15 | 0.34 |-0.38]-0.29] -0.30] -0.28|

+ R

-1.33|-0.94] 1.66 | 0.70 |-0.25] 0.16 X

-0.40] 0.10-0.20] 0.14 |-0.20] 0.19

1.20 |-0.85]-0.39] 0.93|-0.70] -1.2¢]

-0.89]-0.40] 1.10] 0.47 | 0.11 | 0.31




Applying the RelLU activation function...

CEEECE

-0.92) 0.92 |-1.11]-0.23] -0.37 1.70

-1.33]-0.94 1.66 | 0.70 |-0.25 0.16 X

-0.40] 0.10-0.20] 0.14 |-0.20 0.19

0. 12|-0.12] 0.29

1.20 |-0.85]-0.39] 0.93 }-0.70]-1.3¢]

ReLU (EELELLE

0.02|-081

0.24 | 0.99 }-0.50 |-0.89]
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Applying the RelLU activation function...

Wi

031|020 |-0.35}-0.07}-0.13 0.23

0.15 | 034 |-0.38]-0.29| -0.30]-0.28|

-0.92) 0.92 |-1.11]-0.23] -0.37 1.70
-0.28] 0.21] 017 |-0.27]-0.07} 0.21

oo 1ss oo oz ors] X +

-0.40] 0.10-0.20] 0.14 |-0.20] 0.19

-0.33}-0.00}-0.08]-0.12| -0.12| 0.29

1.20 |-0.85]-0.39] 0.93}-0.70]-1.3¢]

ReLl ’ ( -0.89|-0.40] 1.10] 0.47 | 011 | 0.31

0.02|-0.81] 0.24 | 0.99 }-0.50 |-0.89|




Negative values become 0.

031|020 |-0.35}-0.07}-0.13 0.23

015034

.29

-0.28)

-0.92| 0.92 |-1.11]-0.23] -0.37] 1.70
-0.28] 0.21] 017 |-0.27]-0.07} 021

-1.33]-0.94 1.66 | 0.70 | -0.25 0.16 X +

-0.40] 0.10}-0.20] 0.14 |-0.20] 0.19




Then, by multiplying with the second layer’s weights and biases,
we obtain the final output of the Feed-Forward layer. The purpose
of this layer is to increase non-linearity, allowing the network to
better process and distinguish complex patterns (recall
multi-layer perceptrons!)

|-0.00] 0.39 | -0.00}-0.39]-0.37}-0.14

-0.34]-0.10}-0.24{ 033 |-0.40] -0.13}

[ Tl
0. . 5| 1
efefls] X
-0.41] 0.09 |-0.20}-0.06 | -0.22}-0.09
E-EET
TLLLL

031 |-0.41}-0.13}-0.17}-0.03]-0.20]

I [ O

-0.19}-0.08]-0.3¢] 0.40 |-0.12]-0.07]

-0.69] 0.36 |-0.37| 0.12]-0.34}-0.05
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Next, we repeat the same Add & Normalize process.

(R30 & Norm
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As before, we first calculate the sum of the two matrices.

Feed-Forward

Layer Output Matrix 1st Addition & Normalization

082|089 |-0.06] -0.4]-075f 0.1 -0.92] 0.2 |-1.11f-0.23) -037] 1.70 -1.74] 1.81 |-1.57]-0.65) .16 1.4
-0.19]-0.08[-0.36] 0.40|-0.12]-0.07] 4 |-1.:33|-0.94| 1.66 | 0.70 |-0.25 0.16 = |rs2fr0zf 130|110 |-037) 000
I—o.sel 036 |—o.37| o.ul—ovml—oosl |-1.79| 021 |-o.|ol 086 |—u.5n|mz| |-2 48| 057 I-a 47| 098 I-n.aAI 1.z7|
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Then, we normalize the matrix again:

M Sb
-1.74] 1.81 | -1.57)-0.65}-1.16] 1.49 _0,30 1 .43
15g]1.02] 130 [ 11007 000 -0.07 1.03

CLLele] o6 128

SD

-1.01] 1.48 |0.89|-0.24}-0.60] 1.26

-1.41}-0.92) 1.33 | 1.13]-0.20] 0.15




This resulting matrix is the final output of the encoder.

Positional
Encoding

-1.01| 1.48 [-0.89]-0.24]-0.60 1.26

-1.41f-0.92] 1.33 | 113 |-0.29] 0.15

DECCEE
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Now, let's move on to the Decoder.

Output
Probabilties

Positional
Encoding

Outputs
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Just like the encoder, the decoder first performs word encoding
and positional encoding of the output (target) sequence.

Output
Probabilties

osiional Decoder input:  [{sos), |, am] — Index: [0, 6, 3]

Encoding

Decoder output target : [I, am, fine] —Index : [6, 3, 4]

Outputs
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The process of word encoding and positional encoding is

identical to that in the encoder. In fact, the positional encoding
values can be reused from the encoder.

. pos pos
PEospziy = Sin(————;—)

21 PE(pos,2i+1) = COS( 21 )
100009modet 10000%modet
6
Positional A
@~ Encoding 'd N\

Output
Embedding

Outputs 6, IZ BSI 0. 74|O 20 |-1 3AI-045

0, (Sos)l 2. 31|»1 29| 0.21}1 24|1.86|o.os|

|-1:34-057-059
3, am | 046| 006| 0. 22|>1 25|-0.49|>0.34|

0 1 o 1 0 1

0 pos

& Posmonal
¢Q

e 084054005 1 0 1 1pos

ouputs 091-042 009 1 0 1 2pos
6
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Here's how it looks:

I1*2A31|>1.29| 0.21 | 1A24| 1.86 | 0A06|

0 | 2.85 |>0.74|0.20 |*1.3A|*0.57|*0. :{
O|—0446|-0.06|-0.22|>1.25|-O.49|>0.34|

w

&) posiional

oding

Outputs
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The Masked Multi-Head Attention operation in the decoder is
almost the same as in the encoder.

el

CEEEEE
EzEIzCT

-2.311-0.29 0.21}-0.24} 1.86 | 1.06
\

mum aieation

3.69]-0.24 0.24}-0.34-0.57] 0.67]

0.45]-0.44-0.13-0.24-0.440.66

Mask (optional)
Wl Head
o scaling
o
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The Masked Multi-Head Attention operation in the decoder is
almost the same as in the encoder.

0.15] 037|021 fo.24] 0.37]-0.03 Q

-0.21] 0.24 028} 0.06 | 0.40 | 0.01

0.79f-1.0410.74] 0.87 |-0.8¢-0.37

[2oforfozfordrec] oo

|3,69|70.2110,1A|»o,34}o,57| 0.67| X [ozfoosfoos forr[orafos] = [os61fi.66 fr.01f1.091.23} 0.2
Em@ 039)-0.22] 0.21 [ 021 | 009 |01

035|020 fo.16 [-0.07) 001 |-0.17]

?‘"““““’" -0.15}0.33)-0.12]-0.30}-0.33| 0.06-

034 031 [-0.13|-0.24f 0.12] 015

0.10 0.26 | 030 | 0.33 | 0.08 f0.24
Softmax -2.31-0.29 0.21}-0.24] 1.86|1.06| 0.31}0.54 0.64] 0.25| 0.94}-0.1
0.1 fo.16|-0.01] 032 ] 0.11 Jo.02
3.69}-0.24 0.24f-0.34-057) 0.67| X = |o.2¢1.21}-0.98-1.24}0.94f-0.04
Mask (optional) -0.0s] 0.01f0.32 [-0.31] 0.09] 0.10

|’0.4+0.14>0.25|’ .4«10.65' -0.16]-0.08] 0.39 |-0.03]-0.11] 0.14 |D.1D|>0v18|>0.60|>0.51|Dv08|‘0v14|

0.23] 0.05 |-0.20]-0.40] 0.38]-0.29|

Watrix

multipication 028012 Jot0f-0.12)-0.17f 03

Q K v|23t029021f0.24)1.86|1.06 0200190 37p0.16]0.15 024 I1.14-0.23]0.05|0.700.15[0.16

013]-0.11|-038) 038 027  0:33
3.69}-0.24 0.24}-0.34-0.57] 0.67] X - 1.33]0.36[0.12-0.66-0.71}1.34]
-0.23] 0.28 [-0.20[ 0.1 |-0.27] 0.07

0.04 0.02 |0.13 fo.20 |-0.15]-0.3¢]




We multiply the Q and K matrices to create the attention matrix.

{sos|-

am

multiplication
Softmax
Mask (optional)

QK"

(sos) 1 am

Q

0.791-1.040.74] 0.87-0.84-0.37

0.61]1.66 [-1.01}-1.031.23 }-0.2¢

EETEEE

DEEEE
EEOTEEE
EICEEE

|-1.19-0.23]0.05|0.70{0.15|0.16

1.33)0.36}-0.12}-0.66-0.71}1.34]

RO
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We then scale the matrix by dividing it by v/6, just as before, so
that the range of values changes accordingly.

(sos) 1 am -0.13] 0.00]-0.26
1 {sos)|-0.33| 0.01 |-0.63]
T 1 ape]e] = 6 = 0.56 |-0.43| 0.42
P ) 1
0.00 | 0.04| 0.08
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Now, let's explore the key concept of the decoder’s multi-head
attention — masking.
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The goal of the transformer decoder is to generate the output
word sequence, one token at a time (recall: language modeling).

Matrix
multiplication

e« / This is an awesome
° sentence that was
]
T ®
e ®
=
T t
multiplication
Q K Vv
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While the encoder needs to consider all tokens in the input
sentence to understand the full meaning,

", Ilike this NLP class a lot
\‘ o

Mult-Head
Attention
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the decoder generates output one word at a time.

Mask (optional)

| like this NLP
Q K \%
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Therefore, it's natural that the decoder should NOT attend to
words that haven't been generated yet.

\
= Mask (optional)

=
nmultiplication

| like this NLP

e
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To reflect this characteristic, the decoder applies a masking
mechanism during training.

Matrix
multiplication
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The key idea is to hide future tokens so they do not affect the
current prediction.
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like

Mask (optional)

like
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like

this
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lot
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NLP class

a
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Mask (optional)

like

this

NLP

class

lot

SO

like this

NLP class

a

lot

SO
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When this masking algorithm is applied to the attention matrix,

we get:

(sos) | am -0.13] 0.00|-0.26

(sos)|-0.33| 0.01 -3}

= V6 = [0.56|-0.43] 0.42

137 f1.0a]1.02

Wiatiix
multiplication
am |ooo]oarfoz
Softmax 0.00
Mask (optional)

0.04] 0.08
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We add -inf to the masked positions because, after passing
through the softmax layer, -inf becomes 0, effectively eliminating
attention to those positions.

—

Mask (optional) |2
Wl Head i

ol

i thon scaling

-

trix
Q K Vv

[ ool

EETTEE
EREEDE
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Feeding this matrix into the softmax layer gives us:

Mask (optional)

-1.19-0.23]0.05]0.70|0.150.16

1.33]0.36-0.12}-0.66-0.71} 1.34]

ERTETE
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Then we multiply the two matrices as follows:

.
muliiplication __J2

Softmax |-1.19-0.23]0.05]0.700.15]0.16|

|-0.51}-0.071 0.00 0.33 }0.08}-0.29

|0.1 5 |0,0S |D.12 |:0A1 'IFO.2;|:0.58|
AN o scaling

o V
[F1.190.23}0.050.70]0.15]0.16
Q K Vv

1.33]0.36[0.12}-0.66-0.71F1.34]

COREEE
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Next, we concatenate the resulting matrices (if needed):

o concatenate|:
multplcation

[-1.19-0.23]0.05]0.70]0.15]0.16
Softmax

0.51}-0.070.00] 0.33}-0.08}-0.24

eloepforforte]

Mask (optional)
T
Multi-He i
e scaling

=

Q K Vv
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We then multiply again to produce the final matrix of the masked
multi-head attention.

A)

W
L

Fully
connected
Layer

concatenate
-
multiplication ]2

-0.10]-030 0.13 [ 0.31 [ 030 | 0.1

I-ms{-o.zalo.os|0.7n|n.15|o_15| -020]-022]-031-0.01 035} 020 |0_46| ol.g_yl_g_w*g_wqg_zzl
e R o o o o e

030 -00s|-03q] 025 |08 [0
|0.15|o.03|o.12|:0.ﬂ|:0.z;|:0.59| foz4o.1¢Jo1eforsfoodord
032] 003 036 004] 09 027

0.19]-0.37|-0.39] 0.26 | 0.06 |-0.02]

scaling

multiplication

H
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We then apply the same Add & Normalize process again.

I*Z.3I|>0.Z 021 I>0.24| 1 .BSI 1 .06| |0,45I0.30 |>0,3¢|—0,14>(L14 O.ZZ|
|3.69 I-O.Z 0.24I>D.34l>0,57| 0.67| + |U.U9|0.23|>0.09|-0.11>0.I40.07|
| Uv45|-0 A4-D.1 0. 25|-0.440,66| |'0.24|0.14|0.14|>0.|3|-U401>0.14

ENTEDD
Norm([lofedd) = [l

CEETED

el [kl g
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The decoder’s second multi-head attention operates the same
way as the encoder’s, except for the inputs.
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Here, the values of K and V are derived from the encoder’s final
output, multiplied by a 6x6 matrix.

Softmax
Mask (optional)
\

scaling

multiplication_
T
EE
- Q K
o efos|odea]iz]  [roiafosfoafon]izs
o] oafors|  [rafes]is] s o] o
-1.81] 0.57 |[-0.24] 0.89-0.53] 1.12 -1.81] 0.57 J-0.24] 0.89]-0.53] 1.12
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The value of Q comes from the output of the decoder’s previous
Add & Norm layer. In other words, the decoder determines
which parts of the encoder’s output (K, V) to attend to, based
on the context it has generated so far (Q)-similar to attention

e
- |-1.69-0.04-0.204-0.42 1.371.02
______ ¥ |2.13}0.37}-0.24-0.71]-0.89 0.10|
.. £ EEECEE
=11
A A A& || e Q K Vi
1 ¢+ 4

B & @/

1.69}-0.08f-0.20-0.44 1.37| 1.02
-1.01] 1.48 [-0.89|-0.24f-0.60] 1.26 -1.01] 1.48 }o.80|-0.24)-0.60] 1.26

2.13f0.37}0.29f0.71f08s{0.10
-1.41f-0.02] 1.33 | 1.13 [ -0.29] 015 -1.41f-0.02] 1.33 ] 1.13 |-0.29] 015

076}0.70f.23 fo.s2}1.16] 1.69
-1.81) 057 |-0.24] 0.89|-0.53] 1.12 -1.81] 0.57 |-0.24] 0.89|-0.53] 1.12
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Assume the final output of this multi-head attention looks as
follows:

]

concatenate

-0.42) 0.09 | 0.1 -0.37]-0.05 0.03

-0.42| 0.05| 0.17 f0.37 | -0.13] 0.10

Tt
muliplication

-0.42] 0.04| 0.18 |-0.37]-0.14f 0.11
\

& o

1.69}-0.08}-0.20-0.44 1.37| 1.02
-1.01 1.48 |o.89|-0.24}-0.60] 1.26

Mask (optional)
scaling
multiplication

-1.01] 1.48 |-o.89|-0.24f-0.60] 1.26

-1.41f-0.92] 1.33 | 1.13 | -0.29] 0.1 -1.41f-0.02] 133 | 1.

2.3f0.37}0.20f0.71}0.85{0.10
3|-029] 015

o076o.70f.23 fo.sz2}1.16] 1.69
-1.81) 0.57 |-0.24] 0.89|-0.53] 112 -1.81) 0.57 |-0.24] 0.89|-0.53] 1.12
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The same computational process is repeated, so details are
omitted here.
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Finally, the last linear and softmax layers produce the final output
probabilities.
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If the decoder output matrix at this stage looks like this:

Output
Probabilties
Softmax

Thear

-1.90] 057 | 0.36 f-0.72) 0.77 | 0.91

198 f-0.24] 0.20 |18 fo.77| 001

0.10 f0.51| 094 |-1.27|-0.85 1.58
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The linear layer projects it back to the full vocabulary size (=11).

Output
Probabilties

-0.00]-039}-0.71] 0.19 | 0.57|-0.41| 0.64

133 1.06 |-0.73] 056 0.25 J-071] 0.05

Linear Layer

057|036 |-0.72 077 | 0.91

o.24] 0.20 f1.18 Fo.77| 0.01

0.10 f0.51 | 094 |-1.27]-0.85] 1.58




The softmax function then produces the final output probabilities.

Output
Probabilties

032]0.05| 0.07 | 0.07 | 0.06] 0.04 | 0.03 [ 0.08| 0.11 | 0.09

012

0.09) 0.13] 0.03) 0.10] 0.02

0.23[0.04 | 0.14 0.10] 0.04

.08

[ezs]eosos[ocsoar[oss]oce o] orrocaf oce]

t
Softmax

162 |-0.30] 0.14 | 0.13 |-0.09}-0.39}-0.71 ] 0.19 | 0.57|-0.41| 0.64

0.08) 0.46]-0.89) 0.22 |-1.33]

1.06 |-0.73] 056 | 0.25|-0.71] 0.05

D EEE

Linear Layer

-1.90] 057 | 0.36 [-0.72) 0.7 | 0.91

198 [-0.24] 0.20 |1.18 }0.77| 0.01
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Finally, the predicted outputs are compared with the
ground-truth labels (e.g., 6, 3, 4).

032 ] 0.05 | 0.07 | 0.07 | 0.06] 0.04| 0.03 ] 0.08 | 0.11 | 0.08]0.12

0.09) 0.13] 0.03| 0.10] 002 0:23) 0.04 | 0.14] 0.10| 0.04| 0.08

[6] |
o o] T
|m|m|m|m|m|¥g|m|a.4|m|m|m| —p 3] am

[4] fine
Softmax

014013 |-0.00-039}-0.71 ] 0.1 | 0.57

t
Probabilties

-0.41 0.64

-0.89] 0.22 |1.33] 1.06 |-0.73] 056 | 0.25 |-0.71) 0.05

176 1.16 |-1.30| 0.82] 0.63|-0.78 0.22

Linear Layer

-1.90] 057 | 0.36 [-0.72) 0.77 | 0.01

198 [-0.24] 0.20 118 fo.77| 0.01

0.10 |0.51 | 0.94-1.27]-085] 1.58
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Using a loss function (e.g., cross-entropy) and
backpropagation, the model updates all weight parameters
across every layer — this is the learning process of the
Transformer.

0.32]0.05| 0.07 | 0.07 | 0.6} 0.04 | 0.03] 0.08 | 0.11 | 0.08 0,12

009 013] 0.03| 0.10] 0.02 0.23| 0.04 | 0.14] 010 0.04| 0.08

[6] |

e e ) ) ™ Sy [31 am
Povagites T [4] fine

Softmax

162 |-0.30] 0.14 | 0.13 |-0.09}-0.35}-0.71 ] 0.19 | 0.57|-0.41| 0.64

0.08) 0.46|-0.89] 0.22 |-1.33| 1.06 | -0.73] 0.56 | 0.25 |-0.71] 0.05

EECEEDEEEEE

Linear Layer

-1.90] 0.57 | 0.36 [-0.72) 0.77 | 0.91

198 [-0.24] 0.20 118 f0.77| 0.01
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Wrap up




* We explored the architecture of the Transformer model.
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* We explored the architecture of the Transformer model.
+ Do we need to train this model entirely from scratch?

* No. We can take advantage of powerful pre-trained language
models that have already learned general language patterns
from massive datasets.

+ We will experiment with these models using Hugging Face
(open-source library) in the lab session.
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Attention in transformers

Would be a nice recap:
https://www.youtube.com/watch?v=eM1x5fFNoYc Any hints
from the video clip?
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